Issue 48
A. Fesenko et alii, Frattura ed Integrità Strutturale, 48 (2019) 768-792; DOI: 10.3221/IGF-ESIS.48.70
The formulas
2 ( ) z N Z z ,
2 ( ) z i N Z z
u ( ) α βα
v ( ) β βα
βα
βα
were used to find the originals of the displacements 2
2 u ( , , ), v ( , , ) x y z x y z
So,
βα T h
βα T h i D N ( ) β
( )
2 u ( ) z βα
2 ( , ), v ( ) z
F N z
F N z
.
( , )
2
βα
2
2
2
N D N
2
2
N
By analogy, it was found
2
F t z
C
( , )
2 u ( , , ) x y z 2
0 0
, A B
( )cos( cos )cos( sin ) tx ty d dt
S
,
2
2 2 x C y
t
t D F t z t
2
2 v ( , , ) x y z 2
( , )
0 0
, A B
( )cos( cos )cos( sin ) tx ty d dt
S
.
2
t
t D
t
Let’s consider the terms containing the integrals in (37). Using the solution of the stationary thermal conductivity problem (10), the temperature transformation and its derivative are written in the form βα βα ( ) , chN T f chNh βα βα ( ) . shN T Nf chNh After substitution of this transform into (40), the formula for 3 βα w ( ) z was constructed
h
0
3 w ( ) z βα
f
( , , ) F z N d
0
βα
4
(11) (12) shN N chN
1
N z
1
F z N e ( , , )
N z
( shN z N chN )
.
where
*
chNh
D
N
In order to find final expression for displacement (40)
h
i y
3 w ( , , ) x y z
( , , ) F z N e
xd d d
f
cos
(42)
0
βα 2
4
0 0
f should be substituted into (42)
the representation of the function
h
i y i
3 w ( , , ) x y z
( , )
( , , ) F z N e e
d d d d d .
f
cos cos x
0
2
4
0
0 0
Using formula (A3) in the Appendix 1 and (401.06., [41]), it was derived
B A h
C
3 w ( , , ) x y z
t F z t J t x y *
d d dtd ,
( , , ) ( , , , , )
0
0
8
B
0 0 0
where the temperature is defined on a finite interval and supposed to be constant C . Further, after changing the order of integration, and calculating the double integral of the Bessel function, the integral is represented in the form
780
Made with FlippingBook Online newsletter