Issue 48

A. Fesenko et alii, Frattura ed Integrità Strutturale, 48 (2019) 768-792; DOI: 10.3221/IGF-ESIS.48.70

The matrices

 Φ are searched with the help of the matrices (32)

          2 0 N Q P 

(34)

Φ I

After substitution of the expressions (33) into the equations (34), uniting these results, the fundamental matrix is constructed in the form

   

   

         1 N z z (

  N z

)

e

*

 

( , ) z

(35)

0

Φ

    2 N z ( )

1

   

N z

(

)

N

4

*

According to the formula (29) the Green’s matrix has the form

   

   

         1 N z z ( ) (

         (11) (12) (21) (22) 

  N z

)

e

*

 

( , ) z

(36)

0

0

G

    2 N z ( )

1

   

N z

(

)

N

ND

4

2

*

N

where components  are shown at Appendix 4. Finally, the solution of the vector boundary problem (24) in Fourier’s transform domain is constructed with the formulas  ( ) , , 1, 2 ij i j

h

 

 0

  N z

          1 ( ) ( T 

2 z N T d ) ( )

 

  

βα w ( ) z

e

N z

0

βα

*

βα

N

4

 

βα T h

( )

h

 i b

  ND 0

  GD

a e

cos

 0

       (11) 2 (12) ( ) ( ) T N T d

F N z

F N z

( , )

( , )

βα

βα

1

1

D

2

2

2

N

N

N

(37)

h

 

 0

  N z

      ) ( )

1

 

       ( ) T d

βα Z z

e

( N z T

N z

( )

0

βα

*

βα

4

 

βα T h

( )

h

 i b

  ND 0

  GD

a e

cos

 0

       (21) 2 (22) ( ) ( ) T N T d

F N z

F N z

( , )

( , )

βα

βα

2

2

D

2

2

2

N

N

N

where

1

1

  F N z z h shN h z h z shN h z N F N z N z h chN h z N h z chN h z    ) (    )   (    ) (    ) 1 1 ( , ) ( ) ( ) ( ( , ) ) ( ) (

  ) chN h z shN h z  ( (

)

1 2

1

  ) shN h z shN h z  ( (

)

1 2

2

0

 2 2 N D sh Nh Nh    4

D ERIVING THE DISPLACEMENTS AND STRESS FORMULAS IN THE TRANSFORM DOMAIN AND THEIR INVERSION

where S

o, the transformation of the solution is constructed in the form of superposition

3

3

 w ( ), k

 Z z k

 w ( ) z

 z Z z

( )

( ),

k

k

1

1

778

Made with FlippingBook Online newsletter