PSI - Issue 39

Riccardo Caivano et al. / Procedia Structural Integrity 39 (2022) 81–88 Author name / Structural Integrity Procedia 00 (2019) 000–000

87

7

Acknowledgments This work has been supported by the Research Project AMICO(code ARS01_00758) funded by the Italian Ministry of Education, University and Research.

References

[1] Frazier WE. Metal additive manufacturing: A review. J Mater Eng Perform 2014;23:1917–28. https://doi.org/10.1007/s11665-014 0958-z. [2] Lee H, Lim CHJ, Low MJ, Tham N, Murukeshan VM, Kim YJ. Lasers in additive manufacturing: A review. Int J Precis Eng Manuf - Green Technol 2017;4:307–22. https://doi.org/10.1007/s40684-017-0037-7. [3] Yakout M, Elbestawi MA, Veldhuis SC. A review of metal additive manufacturing technologies. Solid State Phenom 2018;278 SSP:1– 14. https://doi.org/10.4028/www.scientific.net/SSP.278.1. [4] Gibson I, Rosen D, Stucker B. Additive Manufacturing Technologies. Springer; 2015. [5] Hällgren S, Pejryd L, Ekengren J. (Re)Design for Additive Manufacturing. Procedia CIRP 2016;50:246–51. https://doi.org/10.1016/j.procir.2016.04.150. [6] Plocher J, Panesar A. Review on design and structural optimisation in additive manufacturing: Towards next-generation lightweight structures. Mater Des 2019;183. https://doi.org/10.1016/j.matdes.2019.108164. [7] Caivano R, Tridello A, Codegone M, Chiandussi G. A new methodology for thermostructural topology optimization: Analytical definition and validation. Proc Inst Mech Eng Part L J Mater Des Appl 2020. https://doi.org/10.1177/1464420720970246. [8] Caivano R, Tridello A, Paolino D, Chiandussi G. Topology and fibre orientation simultaneous optimisation: A design methodology for fibre-reinforced composite components. Proc Inst Mech Eng Part L J Mater Des Appl 2020;234:1267–79. https://doi.org/10.1177/1464420720934142. [9] Benedetti M, du Plessis A, Ritchie RO, Dallago M, Razavi SMJ, Berto F. Architected cellular materials: A review on their mechanical properties towards fatigue-tolerant design and fabrication. Mater Sci Eng R Reports 2021;144:100606. https://doi.org/10.1016/j.mser.2021.100606. [10] Wu W, Hu W, Qian G, Liao H, Xu X, Berto F. Mechanical design and multifunctional applications of chiral mechanical metamaterials: A review. Mater Des 2019;180:107950. https://doi.org/10.1016/j.matdes.2019.107950. [11] Bendsøe MP, Sigmund O. Topology Optimization: Theory, Methods and Applications. 2002. [12] Sigmund O, Maute K. Topology optimization approaches: A comparative review. Struct Multidiscip Optim 2013;48:1031–55. https://doi.org/10.1007/s00158-013-0978-6. [13] Bendsøe MP, Sigmund O. Material interpolation schemes in topology optimization. Arch Appl Mech (Ingenieur Arch 1999;69:635–54. https://doi.org/10.1007/s004190050248. [14] Holmberg E, Torstenfelt B, Klarbring A. Stress constrained topology optimization. Struct Multidiscip Optim 2013;48:33–47. https://doi.org/10.1007/s00158-012-0880-7. [15] Gao X, Li Y, Ma H, Chen G. Improving the overall performance of continuum structures: A topology optimization model considering stiffness, strength and stability. Comput Methods Appl Mech Eng 2020;359:1–23. https://doi.org/10.1016/j.cma.2019.112660. [16] Holmberg E, Torstenfelt B, Klarbring A. Fatigue constrained topology optimization. Struct Multidiscip Optim 2014;50:207–19. https://doi.org/10.1007/s00158-014-1054-6. [17] Collet M, Bruggi M, Duysinx P. Topology optimization for minimum weight with compliance and simplified nominal stress constraints for fatigue resistance. Struct Multidiscip Optim 2017;55:839–55. https://doi.org/10.1007/s00158-016-1510-6. [18] Zhao L, Xu B, Han Y, Xue J, Rong J. Structural topological optimization with dynamic fatigue constraints subject to dynamic random loads. Eng Struct 2020;205:110089. https://doi.org/10.1016/j.engstruct.2019.110089. [19] Chen Z, Long K, Wen P, Nouman S. Fatigue-resistance topology optimization of continuum structure by penalizing the cumulative fatigue damage. Adv Eng Softw 2020;150:102924. https://doi.org/10.1016/j.advengsoft.2020.102924. [20] Oest J, Lund E. Topology optimization with finite-life fatigue constraints. Struct Multidiscip Optim 2017;56:1045–59. https://doi.org/10.1007/s00158-017-1701-9. [21] Jeong SH, Lee JW, Yoon GH, Choi DH. Topology optimization considering the fatigue constraint of variable amplitude load based on the equivalent static load approach. Appl Math Model 2018;56:626–47. https://doi.org/10.1016/j.apm.2017.12.017. [22] Nabaki K, Shen J, Huang X. Evolutionary topology optimization of continuum structures considering fatigue failure. Mater Des 2019;166:107586. https://doi.org/10.1016/j.matdes.2019.107586. [23] Zhang S, Le C, Gain AL, Norato JA. Fatigue-based topology optimization with non-proportional loads. Comput Methods Appl Mech Eng 2019;345:805–25. https://doi.org/10.1016/j.cma.2018.11.015. [24] Suresh S, Lindström SB, Thore CJ, Torstenfelt B, Klarbring A. Topology optimization using a continuous-time high-cycle fatigue model. Struct Multidiscip Optim 2020;61:1011–25. https://doi.org/10.1007/s00158-019-02400-w. [25] Sherif K, Witteveen W, Puchner K, Irschik H. Efficient topology optimization of large dynamic finite element systems using fatigue. AIAA J 2010;48:1339–47. https://doi.org/10.2514/1.45196. [26] Jeong SH, Choi DH, Yoon GH. Fatigue and static failure considerations using a topology optimization method. Appl Math Model 2015;39:1137–62. https://doi.org/10.1016/j.apm.2014.07.020.

Made with FlippingBook Ebook Creator