PSI - Issue 70
R. Mohanraj et al. / Procedia Structural Integrity 70 (2025) 358–364
363
Acknowledgements The authors gratefully acknowledge the financial support provided by the SRM Research and Development Centre through the SEED Grant (SRMUH/R&D/SM/001) for carrying out this research work. The corresponding author also extends sincere thanks to SRM University, Delhi-NCR, Sonipat campus, for their partial financial support (Letter, dated 24.12.2024) in terms of registration fee to attend the International Conference on Structural Integrity and Interactions of Materials in Civil Engineering Structures. References Adebanjo, A. U., Abbas, Y. M., Shafiq, N., Khan, M. I., Farhan, S. A., & Masmoudi, R. 2024. Optimizing nano-TiO 2 and ZnO integration in silica-based high-performance concrete: Mechanical, durability, and photocatalysis insights for sustainable self-cleaning systems. Construction and Building Materials, 446, 138038. Chen, C., Tang, B., Cao, X., Gu, F., & Huang, W. 2021. Enhanced photocatalytic decomposition of NO on portland cement concrete pavement using nano-TiO2 suspension. Construction and Building Materials, 275, 122135. Chunping, G., Qiannan, W., Jintao, L., & Wei, S. 2018. The effect of nano TiO 2 on the durability of ultra-high-performance concrete with and without a flexural load. Ceram-Silikáty, 62, 374-381. Dezhampanah, S., Nikbin, I. M., Mehdipour, S., Mohebbi, R., & Moghadam, H. 2021. Fiber-reinforced concrete containing nano-TiO 2 as a new gamma-ray radiation shielding materials. Journal of Building Engineering, 44, 102542. Döndüren, M. S., & Al-Hagri, M. G. 2022. A review of the effect and optimization of use of nano-TiO 2 in cementitious composites. Research on Engineering Structures and Materials, 8(2), 283-305. Feng, S., Xiao, H., & Guan, S. 2025. Influence of Nano-SiO2 and Nano-TiO 2 on properties and microstructure of cement-based materials. Construction and Building Materials, 459, 139805. Guo, Z., Huang, C., & Chen, Y. 2020. Experimental study on photocatalytic degradation efficiency of mixed crystal nano-TiO 2 concrete. Nanotechnology Reviews, 9(1), 219-229. Gopalakrishnan, K.M., Mohanraj, R., Southamirajan, S. Ramkumar, S., 2024. Characterization of Euphorbia Tortilis Cactus Concrete Specimen by 3D X - ray Tomography. Russian Journal of Nondestructive Testing, 60(6), 692–698. Han, B., Li, Z., Zhang, L., Zeng, S., Yu, X., Han, B., & Ou, J. 2017. Reactive powder concrete reinforced with nano SiO 2 -coated TiO2. Construction and Building Materials, 148, 104-112. Jafari, H., & Afshar, S. 2016. Improved photodegradation of organic contaminants using nano‐TiO 2 and TiO 2 – SiO 2 deposited on Portland cement concrete blocks. Photochemistry and photobiology, 92(1), 87-101. Joshaghani, A., Balapour, M., Mashhadian, M., & Ozbakkaloglu, T. 2020. Effects of nano-TiO 2 , nano-Al 2 O 3 , and nano-Fe 2 O 3 on rheology, mechanical and durability properties of self-consolidating concrete (SCC): An experimental study. Construction and Building Materials, 245, 118444. KM, G., & P, S. (2025). Enhancing concrete beam performance with PVA fibers, coal ash, and graphene fabric: a comprehensive structural analysis. International Journal of Coal Preparation and Utilization, 45(2), 405-421. Lee, B. Y., Jayapalan, A. R., & Kurtis, K. E. 2013. Effects of nano-TiO 2 on properties of cement-based materials.Magazine of Concrete Research, 65(21), 1293-1302. Li, Z., Ding, S., Kong, L., Wang, X., Ashour, A., Han, B., & Ou, J. 2022. Nano TiO 2 -engineered anti-corrosion concrete for sewage system. Journal of Cleaner Production, 337, 130508. Liao, G., Yao, W., She, A., Shi, C., Zuo, J., & Wu, D. 2023. Interfacial design of nano-TiO 2 modified recycled concrete powder for building self cleaning. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 661, 130925. Liu, F., Zhang, T., Luo, T., Zhou, M., Ma, W., & Zhang, K. 2019. The effects of Nano-SiO 2 and Nano-TiO 2 addition on the durability and deterioration of concrete subject to freezing and thawing cycles. Materials, 12(21), 3608. Loganathan, P., Mohanraj, R., Senthilkumar, S., & Yuvaraj, K. 2022. Mechanical performance of ETC RC beam with U-framed AFRP laminates under a static load condition. Revista de la Construcción, 21(3), 679-691. Martins, T. M. D. R., Pacheco-Torgal, F., Miraldo, S., Aguiar, J. L., & Jesus, C. M. G. 2016. An experimental investigation on nano-TiO 2 and fly ash based high performance concrete. Mohanraj, R., Vidhya, K., 2024. Evaluation of compressive strength of Euphorbia tortilis cactus infused M25 concrete by using ABAQUS under static load. Materials Letters 356, 135600. Mohanraj, R., Prasanthni, P., Senthilkumar, S., & Blessy Grant, C. J. 2024. Comparative analysis of armid fiber reinforced polymer for strengthening reinforced concrete beam‐column joints under cyclic loading. Materialwissenschaft und Werkstofftechnik, 55(12), 1743 - 1750. Mohanraj, R., & Krishnasamy, R. 2024. Enhancing concrete flexural behaviour with euphorbia tortilis cactus: Sustainable additive for improved load - carrying capacity and ductility. Indian Journal of Engineering and Materials Sciences (IJEMS), 31(3), 388 - 396. Mohanraj, R., Senthilkumar, S., Goel, P., & Bharti, R. 2023. A state - of - the - art review of Euphorbia Tortilis cactus as a bio - additive for sustainable construction materials. Materials Today: Proceedings. Abdalla, J. A., Thomas, B. S., Hawileh, R. A., Yang, J., Jindal, B. B., & Ariyachandra, E. 2022. Influence of nano-TiO 2 , nano-Fe 2 O 3 , nanoclay and nano-CaCO3 on the properties of cement/geopolymer concrete. Cleaner Materials, 4, 100061.
Made with FlippingBook - Online catalogs