PSI - Issue 70
Muhibur Rahman S. et al. / Procedia Structural Integrity 70 (2025) 627–634
634
Collivignarelli, M. C., Cillari, G., Ricciardi, P., Miino, M. C., Torretta, V., Rada, E. C., & Abbà, A., 2020. The production of sustainable concrete with the use of alternative aggregates: A review. Sustainability , 12(19), 7903. Gao, T., Shen, L., Shen, M., Chen, F., Liu, L., & Gao, L., 2015. Analysis on differences of carbon dioxide emission from cement production and their major determinants. Journal of Cleaner Production , 103, 160-170. Jayasinghe, G. Y., Tokashiki, Y., Kitou, M., & Kinjo, K., 2009. Coal fly ash – based synthetic aggregates as potential alternative container substrates for ornamentals. Journal of Plant Nutrition and Soil Science , 172(5), 720-728. Kandasamy, Y., Kumarasamy, V., Murugan, S., & Singaraj, R., 2024. Utilizing binary ternary blended metakaolin and ground pond ash for reduced carbon footprint emissions and improved mechanical properties in concrete. Matéria (Rio de Janeiro) , 29(1), e20230335. Makul, N., 2020. Advanced smart concrete-A review of current progress, benefits and challenges. Journal of Cleaner Production , 274, 122899. Mohammed, M. S., ElKady, H., & Abdel-Gawwad, H. A., 2021. Utilization of construction and demolition waste and synthetic aggregates. Journal of Building Engineering , 43, 103207. Muhammed, A., & Thangaraju, P., 2019. Experimental Investigation on FACA and FACACRETE — An Innovative Building Material. KSCE Journal of Civil Engineering , 23(11), 4758-4770. Park, J.-H., Jeong, S.-T., Bui, Q.-T., Yang, I.-H., 2022. Strength and permeability properties of pervious concrete containing coal bottom ash aggregates. Materials 15, 7847. https://doi.org/10.3390/ma15217847. Rehman, M. U., Rashid, K., Haq, E. U., Hussain, M., & Shehzad, N., 2020. Physico-mechanical performance and durability of artificial lightweight aggregates synthesized by cementing and geopolymerization. Construction and Building Materials , 232, 117290. Ren, P., Ling, T. C., & Mo, K. H., 2021. Recent advances in artificial aggregate production. Journal of Cleaner Production , 291, 125215. Sahoo, S., & Selvaraju, A. K., 2020. Mechanical characterization of structural lightweight aggregate concrete made with sintered fly ash aggregates and synthetic fibres. Cement and Concrete Composites , 113, 103712. Sekar, T., Ganesan, N., & Nampoothiri, N. V. N., 2011. Studies on strength characteristics on utilization of waste materials as coarse aggregate in concrete. International Journal of Engineering Science and Technology , 3(7), 5436-5440. Shanmugan, S., Deepak, V., Nagaraj, J., Jangir, D., Jegan, S. V., & Palani, S., 2020. Enhancing the use of coal-fly ash in coarse aggregates concrete. Materials Today: Proceedings , 30, 174-182. Silva, R. V., De Brito, J., & Dhir, R. K., 2017. Availability and processing of recycled aggregates within the construction and demolition supply chain: A review. Journal of Cleaner Production , 143, 598-614. Spence, R., & Mulligan, H., 1995. Sustainable development and the construction industry. Habitat International , 19(3), 279-292. Tahri, W., Abdollahnejad, Z., Mendes, J., Pacheco-Torgal, F., & de Aguiar, J. B., 2015. Performance of a fly ash geopolymeric mortar for coating of ordinary Portland cement concrete exposed to harsh chemical environments. Advanced Materials Research , 1129, 573-580. Wongsa, A., Zaetang, Y., Sata, V., Chindaprasirt, P., 2016. Properties of lightweight fly ash geopolymer concrete containing bottom ash as aggregates. Construction and Building Materials 111, 637-643. https://doi.org/10.1016/j.conbuildmat.2016.02.135. Worrell, E., Price, L., Martin, N., Hendriks, C., & Meida, L. O., 2001. Carbon dioxide emissions from the global cement industry. Annual Review of Energy and the Environment , 26(1), 303-329. Zhang, X., Qian, C., & Xie, D., 2022. Preparation of artificial aggregate using waste concrete powder and CO2 fixed by microorganisms. Clean Technologies and Environmental Policy , 24(5), 1453-1467.
Made with FlippingBook - Online catalogs