PSI - Issue 64

ScienceDirect Structural Integrity Procedia 00 (2023) 000–000 Structural Integrity Procedia 00 (2023) 000–000 Available online at www.sciencedirect.com Available online at www.sciencedirect.com ScienceDirect Available online at www.sciencedirect.com ScienceDirect

www.elsevier.com/locate/procedia www.elsevier.com/locate/procedia

Procedia Structural Integrity 64 (2024) 1017–1024

SMAR 2024 – 7th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures Influence of torsional effects in seismic retrofit of RC buildings Massimiliano Ferraioli a *, Osvaldo Pecorari a , Davide Farace a , Gennaro Di Lauro b a Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 9, 81031 Aversa(CE), Italy b Aires Ingegneria, Via Cesare Battisti 31 81100 Caserta(CE), Italy Abstract The nonlinear static procedures are very popular for the design and assessment of buildings subjected to earthquake ground motion in current structural engineering practice. Their application and relative accuracy are very relevant issues, especially in the case of seismic retrofit of irregular and/or high-rise buildings. Many retrofit design procedures are valid for low-rise buildings and/or neglect torsional effects and higher modes contribution. Often, the vibration properties are considered unchanged after retrofit, and the higher modes are neglected. Other ones are based on the proportional stiffness criterion (i.e., lateral story stiffness due to the additive structures is considered proportional to that of the original main structure). Still others rely on the hypothesis that the main structure remains elastic. Often, they neglect the interaction between the main structure and the additive structures used for retrofit. These are very significant drawbacks in the case of plan-asymmetric buildings, where torsional effects are important. In this case, the seismic response is dominated by harmful torsional effects and, thus, the retrofit strategy should significantly modify the dynamic response. To overcome such drawbacks but still keep the simplicity of using equivalent pushover analysis, this paper develops a “two-step” pushover procedure for seismic retrofit of plan-asymmetric buildings using buckling restrained braces based on steel hysteretic dampers (HBF). To this aim, a real case-study school building has been considered in the analyses. A design method has been implemented to size buckling restrained braces to be placed on selected spans and stories of the building. The effectiveness of the retrofit strategy has been finally demonstrated by nonlinear time-history analyses under different sets of earthquake-strong ground motions. © 2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of SMAR 2024 Organizers Keywords: Seismic Retrofit; Reinforced concrete building; Torsional effects. SMAR 2024 – 7th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures Influence of torsional effects in seismic retrofit of RC buildings Massimiliano Ferraioli a *, Osvaldo Pecorari a , Davide Farace a , Gennaro Di Lauro b a Department of Engineering, University of Campania “Luigi Vanvitelli”, Via Roma 9, 81031 Aversa(CE), Italy b Aires Ingegneria, Via Cesare Battisti 31 81100 Caserta(CE), Italy Abstract The nonlinear static procedures are very popular for the design and assessment of buildings subjected to earthquake ground motion in current structural engineering practice. Their application and relative accuracy are very relevant issues, especially in the case of seismic retrofit of irregular and/or high-rise buildings. Many retrofit design procedures are valid for low-rise buildings and/or neglect torsional effects and higher modes contribution. Often, the vibration properties are considered unchanged after retrofit, and the higher modes are neglected. Other ones are based on the proportional stiffness criterion (i.e., lateral story stiffness due to the additive structures is considered proportional to that of the original main structure). Still others rely on the hypothesis that the main structure remains elastic. Often, they neglect the interaction between the main structure and the additive structures used for retrofit. These are very significant drawbacks in the case of plan-asymmetric buildings, where torsional effects are important. In this case, the seismic response is dominated by harmful torsional effects and, thus, the retrofit strategy should significantly modify the dynamic response. To overcome such drawbacks but still keep the simplicity of using equivalent pushover analysis, this paper develops a “two-step” pushover procedure for seismic retrofit of plan-asymmetric buildings using buckling restrained braces based on steel hysteretic dampers (HBF). To this aim, a real case-study school building has been considered in the analyses. A design method has been implemented to size buckling restrained braces to be placed on selected spans and stories of the building. The effectiveness of the retrofit strategy has been finally demonstrated by nonlinear time-history analyses under different sets of earthquake-strong ground motions. © 2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of SMAR 2024 Organizers Keywords: Seismic Retrofit; Reinforced concrete building; Torsional effects. © 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of SMAR 2024 Organizers

* Corresponding author. Tel.: .+39-0815010210 fax: +39 081 5010463. E-mail address: massimiliano.ferraioli@unicampania.it * Corresponding author. Tel.: .+39-0815010210 fax: +39 081 5010463. E-mail address: massimiliano.ferraioli@unicampania.it

2452-3216 © 2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of SMAR 2024 Organizers 2452-3216 © 2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of SMAR 2024 Organizers

2452-3216 © 2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of SMAR 2024 Organizers 10.1016/j.prostr.2024.09.430

Made with FlippingBook Digital Proposal Maker