PSI - Issue 64

Available online at www.sciencedirect.com Available online at www.sciencedirect.com ScienceDirect Structural Integrity Procedia 00 (2023) 000–000

www.elsevier.com/locate/procedia

ScienceDirect

Procedia Structural Integrity 64 (2024) 436–444

SMAR 2024 – 7th International Conference on Smart Monitoring, Assessment and Rehabilitation of Civil Structures Improving the Structural Performance of RC Beams with Openings Using Iron-based Shape Memory Alloy (Fe-SMA) Reinforcement Mohamed Elkafrawy a,b,c , Mohammad AlHamaydeh c *, Haya Zuaiter c , Doha ElMaoued c a Materials Science and Engineering, College of Arts and Sciences, American University of Sharjah, Sharjah, UAE b Structural Engineering Department, Tanta University, Tanta, Egypt c Department of Civil Engineering, American University of Sharjah, Sharjah, UAE Abstract Incorporating openings within reinforced concrete (RC) beams poses significant risks to their structural integrity and performance, presenting a formidable challenge in structural engineering. This research employs numerical simulations to assess the efficacy of Iron-based Shape Memory Alloy (Fe-SMA) reinforcement in mitigating these adverse effects. Focusing on two critical factors, the size of the opening and the level of pre-stress applied to the Fe SMA reinforcements, findings demonstrate that strategically positioned Fe-SMA bars significantly improve the structural response of RC beams. Such enhancements include increased stiffness, reduced crack propagation, and improved ductility and load-carrying capacity compared to control beams. These attributes collectively contribute to a more robust and durable structural system. Although pre-stressing the Fe-SMA bars at 50% does not significantly impact the beams’ ultimate load capacity and ductility, the overall results underscore the potential of Fe-SMA reinforcements to enhance the durability and performance of RC beams with openings. This research provides crucial insights into optimizing RC beam designs to surmount the challenges posed by openings, thus paving the way for developing more resilient and efficient structural systems. © 2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of SMAR 2024 Organizers Keywords: RC beams; Fe-SMA reinforcement; Structural performance; Strengthening. © 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of SMAR 2024 Organizers

* Corresponding author. Tel.: +971 6 515 2647 E-mail address: malhamaydeh@aus.edu

2452-3216 © 2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of SMAR 2024 Organizers

2452-3216 © 2024 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of SMAR 2024 Organizers 10.1016/j.prostr.2024.09.280

Made with FlippingBook Digital Proposal Maker