PSI - Issue 60

B Shashank Dutt et al. / Procedia Structural Integrity 60 (2024) 690–699 Author name / StructuralIntegrity Procedia 00 (2019) 000 – 000

699

10

Choudhary, B.K., 2013. Influence of strain rate and temperature on serrated flow in 9Cr-1Mo ferritic steel. Materials Science and Engineering A 564, 303-309. Dutt, B.S., Babu, M.N., Venugopal, S., Sasikala, G., Bhaduri, A.K., 2011. Effect of test temperature on fracture toughness of modified 9Cr-1Mo steel. Materials Science and Technology 27, 1527-1533. Dutt, B.S., Babu, M.N., Shanthi, G., Moitra, A., Sasikala, G., 2018. Investigation on fracture behavior of Grade 91 steel at 300-550 °C. Journal of Materials Engineering and Performance 27, 6577-6584. Hahn, G.T., Rosenfield, A.R., 1968. Sources of fracture toughness the relation between KIC and the ordinary tensile properties of metals, in “Applications Related Phenomena in Titanium Alloys”. In ASTM STP, 5 -32. Janulionis, R., Dundulis, G., Grybenas, A., 2021. Numerical research of elastic-plastic fracture toughness of aged ferritic-martensitic steel. Engineering Failure Analysis 120, February, 105070 Kamat, S.V., Srinivas. M., Rao, P.R., 2011. Effect of temperature on the mode I and mixed mode I/III fracture toughness of SA333 steel. Materials Science and Engineering A 528, 4141-4146. Keller, C., Margulies, M.M., Guillot, I., 2012. Experimental analysis of the dynamic strain ageing for a Krishnan, S.A., Nikhil, R., Moitra, A., Vasudevan, M., 2022. VGM based ductile damage parameter for fracture prediction in Mod. 9Cr – 1Mo steel. International Journal of Pressure Vessels and Piping 199, October, 104725 Mannan, S.L., Valsan, M., 2006. High-temperature low cycle fatigue, creep – fatigue and thermomechanical fatigue of steels and their welds. International Journal of Mechanical Sciences 48, 160 – 175. Nagesha, A., Valsan, M., Kannan, R., Rao, K.B.S., Mannan, S.L., 2002, Influence of temperature on the low cycle fatigue behaviour of a modified 9Cr – 1Mo ferritic steel. International Journal of Fatigue 24, 1285-1293. Oh, G., 2022. A simplified toughness estimation method based on standard tensile data. International Journal of Pressure Vessels and Piping 199, October, 104733 Roy, A.K., Kumar, P,, Maitra, D., 2009. Dynamic strain ageing of P91 grade steels of varied silicon content. Material Science and Engineering A 499, 379-386. Samant, S.S., Singh.I.V., Singh, R.N., 2020. Effect of Thermo-mechanical Treatment on High Temperature Tensile Properties and Ductile – Brittle Transition Behavior of Modified 9Cr-1Mo Steel. Metallurgical and Materials Transactions A 51, 3868-3885. Stratil L., Siska, F., Hadraba, H., Fintova, S., Mrna, T., Dlouhy, I., 2017. The effect of specimen size for the P91 steel at elevated and high temperatures, Proceedings of the ASME Pressure Vessels and Piping Conference. Hawaii, USA. Verma, P., Rao, G.S., Chellapandi, P., Mahobia, G.S., Chattopadhyay, K., Srinivas, N.C.S., Singh, V., 2015. Dynamic strain ageing, deformation and fracture behavior of modified 9Cr-1Mo steel. Materials Science and Engineering A , 621, 39 – 51. modified T91 martensitic steel. Materials Science and Engineering A 536, 273-275. Kishore, R., Singh, R.N., Kashyap, B.P., 1997. Effect of dynamic strain ageing on the tensile properties of a modified 9Cr-1Mo steel. Journal of Materials Science 32, 437-442.

Made with FlippingBook Learn more on our blog