PSI - Issue 57

Wilmer Velilla-Díaz et al. / Procedia Structural Integrity 57 (2024) 461–468 Velilla-D´ıaz & Zambrano / Structural Integrity Procedia 00 (2023) 000–000

468

8

Li, X., Jiang, X., 2019. Theoretical analyses of nanocrack nucleation near the main crack tip in nano and micro crystalline materials. Engineering Fracture Mechanics 221. doi: 10.1016/j.engfracmech.2019.106672 . Liu, Q.Y., Zhou, J., Bao, J.D., Zhao, Y.W., Xiong, L.C., Shi, T.L., Long, Y.H., 2019. A semi-empirical fracture model for silicon cleavage fracture and its molecular dynamics study. Theoretical and Applied Fracture Mechanics 100, 86–92. URL: https://doi.org/10.1016/j.tafmec. 2018.12.007 , doi: 10.1016/j.tafmec.2018.12.007 . Mendelev, M.I., Kramer, M.J., Becker, C.A., Asta, M., 2008. Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid al and cu. Philosophical Magazine 88, 1723–1750. doi: 10.1080/14786430802206482 . Meyers, M.A., Mishra, A., Benson, D.J., 2006. Mechanical properties of nanocrystalline materials. Progress in Materials Science 51, 427–556. doi: 10.1016/j.pmatsci.2005.08.003 . Ovid, I.A., 2007. Review on the fracture processes in nanocrystalline materials. Journal of Materials Science 42, 1694–1708. doi: 10.1007/ s10853-006-0968-9 . Pal, S., Reddy, K.V., Deng, C., 2019. On the role of cu-zr amorphous intergranular films on crack growth retardation in nanocrystalline cu during monotonic and cyclic loading conditions. Computational Materials Science 169. doi: 10.1016/j.commatsci.2019.109122 . Plimpton, S., 1995. Fast parallel algorithms for short – range molecular dynamics. Journal of Computational Physics 117, 1–19. URL: http: //lammps.sandia.gov , doi: 10.1006/jcph.1995.1039 . Rycroft, C.H., 2009. Voro ++ : A three-dimensional voronoi cell library in c ++ . Chaos 19, 041111. doi: 10.1063/1.3215722 . SATO, M., KATO, Y., AOKI, S., IKOMA, A., 1983. E ff ects of crystal orientation on the cutting mechanism of the aluminum single crystal : 2nd report : On the (111) plane and the (112) end cutting. Bulletin of JSME 26, 890–896. doi: 10.1299/jsme1958.26.890 . SATO, M., KATO, Y., TSUTIYA, K., AOKI, S., 1981. E ff ects of crystal orientation on the cutting mechanism of aluninum single crystal. Bulletin of JSME 24, 1864–1870. doi: 10.1299/jsme1958.24.1864 . Shu, X.T., Xiao, S., Ma, L., Deng, H., 2017. Atomistic simulation of crack propagation in single crystal tungsten under cyclic loading. Journal of materials research 32, 1474–1483. doi: 10.1557/jmr.2017.114 . Skogsrud, J., Thaulow, C., 2015. Application of ctod in atomistic modeling of fracture. Engineering Fracture Mechanics 150, 153–160. doi: 10. 1016/j.engfracmech.2015.08.043 . Skogsrud, J., Thaulow, C., 2017. E ff ect of crystallographic orientation on nanomechanical modelling of an iron single crystal cracked cantilever beam. Materials Science and Engineering A 685, 274–283. URL: http://dx.doi.org/10.1016/j.msea.2016.12.060 , doi: 10.1016/ j.msea.2016.12.060 . Stukowski, A., 2010. Visualization and analysis of atomistic simulation data with ovito-the open visualization tool. Modelling and Simulation in Materials Science and Engineering 18. doi: 10.1088/0965-0393/18/1/015012 . Thompson, A.P., Plimpton, S.J., Mattson, W., 2009. General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions. The Journal of Chemical Physics 131, 1–6. doi: 10.1063/1.3245303 . Tritremmel, C., Daniel, R., Lechthaler, M., Rudigier, H., Polcik, P., Mitterer, C., 2017. Surface coatings technology microstructure and mechanical properties of nanocrystalline al – cr – b – n thin fi lms. Surface Coatings Technology 320, 472–477. URL: http://dx.doi.org/10.1016/ j.surfcoat.2012.09.055 , doi: 10.1016/j.surfcoat.2012.09.055 . Velilla-D´ıaz, W., Pacheco-Sanjuan, A., Zambrano, H.R., 2019. The role of the grain boundary in the fracture toughness of aluminum bicrystal. Com putational Materials Science 167, 34–41. URL: https://doi.org/10.1016/j.commatsci.2019.05.031 , doi: 10.1016/j.commatsci. 2019.05.031 . Velilla-D´ıaz, W., Ricardo, L., Palencia, A., Zambrano, H.R., 2021. Fracture toughness estimation of single-crystal aluminum at nanoscale. Nano materials 11, 1–11. doi: 10.3390/nano11030680 . Velilla-D´ıaz, W., Zambrano, H.R., 2021. Crack length e ff ect on the fracture behavior of single-crystals and bi-crystals of aluminum. Nanomaterials 11, 1–9. doi: 10.3390/nano11112783 . Wang, Y., Fu, R., Zhou, X., Thompson, G.B., Yu, Z., Li, Y., 2016. Enhanced mechanical properties of pure copper with a mixture microestructure of nanocrystalline and ultrafine grains. Materials Letters 185, 546–549. White, P., 2012. Molecular dynamic modelling of fatigue crack growth in aluminium using lefm boundary conditions. International Journal of Fatigue 44, 141–150. doi: 10.1016/j.ijfatigue.2012.05.005 . Zhang, Y., Jiang, S., Zhu, X., Zhao, Y., 2016. A molecular dynamics study of intercrystalline crack propagation in nano-nickel bicrystal films with (010) twist boundary. Engineering Fracture Mechanics 168, 147–159. URL: http://linkinghub.elsevier.com/retrieve/pii/ S0013794416304799 , doi: 10.1016/j.engfracmech.2016.10.008 .

Made with FlippingBook Ebook Creator