PSI - Issue 57
Wilmer Velilla-Díaz et al. / Procedia Structural Integrity 57 (2024) 461–468
467
Velilla-D´ıaz & Zambrano / Structural Integrity Procedia 00 (2023) 000–000
7
4. Conclusions
In conclusion, this study aimed to investigate the e ff ect of grain boundaries (GBs) on fatigue crack growth in aluminum bi-crystals. Through molecular dynamics (MD) simulations, the mechanical behavior and deformation mechanisms of bi-crystals with di ff erent tilt and twist GB angles were analyzed. The results demonstrated di ff erent e ff ects of low and high tilt and twist GB angles on fatigue crack growth. • For low tilt angles (5° and 10°), the GBs did not impede crack growth, indicating that the global stress required to fracture the bi-crystal occurred beyond the first crystal. • For high tilt angles, the GBs acted as barriers, e ff ectively halting crack propagation. In these cases, the stress needed to continue crack propagation had to surpass a critical threshold at the first tearing event along the GB. • Twist grain boundaries with angles higher than 5° have a remarkable ability to impede fatigue crack growth in aluminum bi-crystals. The presence of these GBs can lead to a significant enhancement in fatigue resistance, with materials exhibiting more than a three-fold improvement compared to those without such GBs or with high tilt angles as shown in Figure 6. These findings highlight the significant influence of GBs on the fatigue crack growth behavior of aluminum bi crystals. Understanding the role of GBs in crack propagation is crucial for designing and engineering materials with improved fatigue resistance. The results provide valuable insights for the development of advanced materials with tailored grain boundary properties. Berman, D., Krim, J., 2013. Surface science, mems and nems: Progress and opportunities for surface science research performed on, or by, microdevices. Progress in Surface Science 88, 171–211. URL: http://dx.doi.org/10.1016/j.progsurf.2013.03.001 , doi: 10.1016/ j.progsurf.2013.03.001 . Chandra, S., Kumar, N.N., Samal, M.K., Chavan, V.M., Raghunathan, S., 2017. An atomistic insight into the fracture behavior of bicrystal aluminum containing twist grain boundaries. Computational Materials Science 130, 268–281. Chandra, S., Samal, M.K., Chavan, V.M., 2019. Dislocation nucleation from damaged grain boundaries in face centered cubic metals – an atomistic study. Materialia 8. doi: 10.1016/j.mtla.2019.100497 . Chatterjee, A., Sharma, G., Varshney, J., Neogy, S., Singh, R.N., 2017. Materials science engineering a comparative study of mechanical properties of pure nanocrystalline ni and. Materials Science Engineering A 684, 626–633. URL: http://dx.doi.org/10.1016/j.msea.2016.12. 052 , doi: 10.1016/j.msea.2016.12.052 . Ding, J., ran Zheng, H., Tian, Y., Huang, X., Song, K., qing Lu, S., guo Zeng, X., Ma, W.S., 2020. Multi-scale numerical simulation of fracture behavior of nickel-aluminum alloy by coupled molecular dynamics and cohesive finite element method (cfem). Theoretical and Applied Fracture Mechanics 109, 102735. URL: https://doi.org/10.1016/j.tafmec.2020.102735 , doi: 10.1016/j.tafmec.2020.102735 . Hahn, E.N., Meyers, M.A., 2015. Grain-size dependent mechanical behavior of nanocrystalline metals. Materials Science and Engineering A 646, 101–134. doi: 10.1016/j.msea.2015.07.075 . Haouala, S., Segurado, J., LLorca, J., 2018. An analysis of the influence of grain size on the strength of fcc polycrystals by means of computational homogenization. Acta Materialia 148, 72–85. doi: 10.1016/j.actamat.2018.01.024 . Haque, M.A., Saif, M.T., 2005. Thermo-mechanical properties of nano-scale freestanding aluminum films. Thin Solid Films 484, 364–368. doi: 10.1016/j.tsf.2005.02.036 . Horstemeyer, M.F., Farkas, D., Kim, S., Tang, T., Potirniche, G., 2010. Nanostructurally small cracks (nsc): A review on atomistic modeling of fatigue. International Journal of Fatigue 32, 1473–1502. URL: http://dx.doi.org/10.1016/j.ijfatigue.2010.01.006 , doi: 10. 1016/j.ijfatigue.2010.01.006 . Jeong, S.J., Kwak, N.W., Byeon, P., Chung, S.Y., Jung, W., 2018. Conductive nature of grain boundaries in nanocrystalline stabilized bi2o3 thin film electrolyte. ACS Applied Materials & Interfaces 10, 6269–6275. URL: https://doi.org/10.1021/acsami.7b16875 , doi: 10.1021/ acsami.7b16875 , arXiv:https://doi.org/10.1021/acsami.7b16875 . pMID: 29369610. Ji, H., Ren, K., Ding, L., Wang, T., Li, J.M., Yang, J., 2022. Molecular dynamics simulation of the interaction between cracks in single-crystal aluminum. Materials Today Communications 30. doi: 10.1016/j.mtcomm.2021.103020 . Kaliyaperumal, C., Sankarakumar, A., Paramasivam, T., 2020. Grain size engineering in nanocrystalline y2zr2o7: A detailed study on the grain size correlated electrical properties. Journal of Alloys and Compounds 831, 154782. URL: https://www.sciencedirect.com/science/ article/pii/S0925838820311452 , doi: https://doi.org/10.1016/j.jallcom.2020.154782 . Li, X., Bhushan, B., 2003. Fatigue studies of nanoscale structures for mems / nems applications using nanoindentation technique. Surface and Coatings Technology 163-164, 521–526. doi: 10.1016/S0257-8972(02)00662-X . References Anderson, T.L., 2005. Fracture mechanics. Third ed., Taylor Francis. ASTM International, 2017. Standard Test Method for Measurement of Fracture Toughness.
Made with FlippingBook Ebook Creator