PSI - Issue 41

Liviu Daniel Pîrvulescu et al. / Procedia Structural Integrity 41 (2022) 492–499 Author name / Structural Integrity Procedia 00 (2019) 000 – 000

499

8

that the dispersion of the size of the gaps in the cross section of the larger diameter samples is compared with the nucleated areas of the fatigue crack. Therefore, the dispersion of voids is the main factor leading to the dispersion of the life of the magnesium alloy AM50A.

Acknowledgements This work was partially supported by the UEFISCDI, Romania under Bridge Grant program, grant no. BG89/2016 and by European Union’s Horizon 2020 research and innovation program under grant agreement No. 857124. References Ai, Y., Zhu, S.P., Liao, D., Correira, J.A.F.O., Souto, C., De Jesus, A.M.P., Keshtegar, B. 2019. Probabilistic Modeling of Fatigue Life Distribution and Size Effect of Components with Random Defects. International Journal of Fatigue 126, 165-173. Ai, Y., Zhu, S.P., Liao, D., Correira, J.A.F.O., De Jesus, A.M.P. 2019. Probabilistic Modeling of Notch Fatigue and Size of Components using Highly Stressed Volume Approach. International Journal of Fatigue 127, 110-119. Horstemeyer M.F., Yang N., Gall K., McDowell D., Fan J., Gullet P.M., High cycle fatigue mechanisms in a cast AM60B magnesium alloy, Fatigue Fract Eng Mater Struct, 25, p. 45 – 56, (2002). Kalatehmollaei E., Mahmoudi-Asl H., Jahed H., An asymmetric elastic – plastic analysis of the load-controlled rotating bending test and its application in the fatigue life estimation of wrought magnesium AZ31B, Int J Fatigue 64, p. 33 – 41, (2014). Karr U., Schönbauer B.M., Mayer H., Near ‐ threshold fatigue crack growth properties of wrought magnesium alloy AZ61 in ambient air, dry air, and vacuum, Fatigue Fract Eng Mater Struct. 41, p.1938 – 1947, (2018). Li Z., Wang Q., Luo A.A., Fu P., Peng L., Fatigue strength dependence on the ultimate tensile strength and hardness in magnesium alloys, International Journal of Fatigue, 80, p. 468 – 476, (2015). Li X., Xiong S.M., Guo Z., Failure behavior of high pressure die casting AZ91D magnesium all, Material Science and Engineering A, 672, p. 216 – 225, (2016). Lu Y., Taheri F., Gharghouri M.A., Han H.P., Experimental and numerical study of the effects of porosity on fatigue crack initiation of HPDC magnesium AM60B alloy, J Alloy Compd, 470, p. 202 – 13 (2008). Marsavina, L., Iacoviello, F., Pirvlulescu, L.D., Di Cocco, V., Rusu, L., Engineering prediction of fatigue strength for AM50 magnesium alloys, International Journal of Fatigue, 127, p. 10 – 15, (2019). Mohd, S., Mutoh, Y., Otsuka, Y., Miyashita, Y., Koike, T., Suzuki, T. 2011. Scatter Analysis of Fatigue Life and Pore Size Data of Die-Cast AM60B Magnesium Alloy. International Journal of Materials and Metallurgical Engineering, 5(9), p.812-817 (2011). Serban, D.A., Marsavina, L., Rusu, L., Negru, R. Numerical study of the behavior of magnesium alloy AM50 in tensile and torsional loadings, Archive of Applied Mechanics, 89, p. 911-917 (2019). Sonsino C.M., Dieterich K., Fatigue design with cast magnesium alloys under constant and variable amplitude loading, International Journal of Fatigue, 28, p. 183-193, (2006). Sun, C., Song, Q. 2018. A Method for Predicting the Effect of Specimen Geometry and Loading Condition on Fatigue Strength. Metal 8 (811), 1 13. Tomaszewski, T. 2018. Analysis of the Statistical Size Effect Model a Critical Volume in Range of High-Cycle Fatigue. Procedia Structural Integrity 13, 1756-1761. Uematsu Y., Kakiuchi T., Tamano S., Mizuno S., Tamada K., Fatigue behavior of AZ31 magnesium alloy evaluated using single crystal micro cantilever specimen, Int J Fatigue, 93, p. 30 – 37, (2016). Watanabe H., Fatigue Strength Analysis of Magnesium Alloys, Meiden Review, 168, p. 37-42, (2016).

Made with FlippingBook - Online magazine maker