PSI - Issue 34

Available online at www.sciencedirect.com Structural Integrity Procedia 00 (2019) 000 – 000 Available online at www.sciencedirect.com ScienceDirect

www.elsevier.com/locate/procedia

ScienceDirect

Procedia Structural Integrity 34 (2021) 191–198

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of the Esiam organisers Abstract The selective laser sintering (SLS) is an additive manufacturing technology with clear potential for producing high quality polymeric components of various thermoplastic polymers and elastomers which can be used in demanding engineering applications under complex service loading conditions. The prerequisite for these applications is that the stiffness and the tensile strength of the SLS specimens is in the same range as for injection molded specimens using a proper parameter set of the SLS process and qualified materials. While the tensile strength of SLS printed polymers is recently determined by many researchers, hardly any data are available about the fatigue behavior of SLS polymers on specimen level and even less on component level. Cylindrical specimens with and without round notch have been designed and additively manufactured using PA12 and TPU SLS grades in two different printing directions (vertical and horizontal). The monotonic tensile behavior was characterized over a wide loading rate range (0.1 to 100 mm/s) and the tensile strength and failure strain values were determined. The fatigue behavior was characterized under cyclic loading conditions at various stress ratios (R=0.1, -1), at a constant frequency of 5 Hz at 5 stress levels. Stress vs. cycle number-to-failure, N f points were determined for constructing conventional S-N curves for the materials investigated. A distinct anisotropy of the tensile strength and failure strain was recognized for the SLS TPU investigated. © 2020 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of the Esiam organisers Keywords: Type your keywords here, separated by semicolons ; 1. Introduction and Objectives A number of polymeric components are exposed to a complex combination of external loads in engineering applications. Due to the layered character of the processes, additively manufactured components reveal inherently r This is an open access article un The second European Conference on the Structural Integrity of Additively Manufactured Materials Characterization of the Fatigue Behavior of SLS Thermoplastics Zoltan Major a , Michael Lackner a , Anna Hössinger-Kalteis a and Thomas Lück b a Institute of Polymer Product Engineering, Johannes Kepler University Linz, Altenberger Str 69, 4040 Linz, Austria b Cirp GmbH, Römerstrasse 8, D-71296 Heimsheim, Germany a a e a a b

2452-3216 © 2020 The Authors. Published by ELSEVIER B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of the Esiam organisers

2452-3216 © 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0) Peer-review under responsibility of the scientific committee of the Esiam organisers 10.1016/j.prostr.2021.12.028

Made with FlippingBook Ebook Creator