PSI - Issue 34

Carla M. Ferreira et al. / Procedia Structural Integrity 34 (2021) 205–210 Carla M. Ferreira et al./ Structural Integrity Procedia 00 (2019) 000 – 000

210

6

failure mechanism of specimens. From fractography analysis point of view different type of voids and defects were found along specimens’ surface , generating stress concentrators that contributed for crack initiation. Further studies focusing on the reduction of surface roughness and improvement of surface quality, for instance by using acetone vapor smoothing or ironing (Sardinha et al., 2020), are recommended. Acknowledgments This work was supported by FCT, through IDMEC, under LAETA, project UIDB/50022/2020. The authors acknowledge the funding of the MOBILEPRO-U/ADIST project, reference 1802P.00306, by the Sociedade Ponto Verde. The authors also gratefully acknowledge the funding of the Big FDM project, FCT reference PTDC/EME – EME/32103/2017. References Balderrama-armendariz, C. O., Macdonald, E., Espalin, D., Cortes-saenz, D., Wicker, R., & Balderrama-armendariz, C. O. (2018). Torsion analysis of the anisotropic behavior of FDM technology. The International Journal of Advanced Manufacturing Technology . doi: 10.1007/s00170-018-1602-0 Cantrell, J., Rohde, S., Damiani, D., Gurnani, R., Disandro, L., Anton, J., Young, A., Jerez, A., Steinbach, D., Kroese, C., & Ifju, P. (2017). Experimental Characterization of the Mechanical Properties of 3D Printed ABS and Polycarbonate Parts. In Advancement of Optical Methods in Experimental Mechanics (Vol. 3, pp. 89 – 105). doi: 10.1007/978-3-319-41600-7 Cuan-Urquizo, E., Barocio, E., Tejada-Ortigoza, V., Pipes, R. B., Rodriguez, C. A., & Roman-flores, A. (2019). Characterization of the Mechanical Properties of FFF Structures and Materials : A Review on the Theoretical Approaches. Materials , 12 (825), 25. doi: 10.3390/ma12060895 Dey, A., & Yodo, N. (2019). A Systematic Survey of FDM Process Parameter Optimization and Their Influence on Part Characteristics. Journal of Manufacturing and Materials Processing , 3 . doi: 10.3390/jmmp3030064 Domingo-Espin, M., Travieso-Rodriguez, J. A., Jerez-Mesa, R., & Lluma-Fuentes, J. (2018). Fatigue Performance of ABS Specimens Obtained by Fused Filament Fabrication. Materials , 11 , 2521. doi: 10.3390/ma11122521 Lee, J., & Huang, A. (2013). Fatigue analysis of FDM materials. Rapid Prototyping Journal , 19 (4), 291 – 299. doi: 10.1108/13552541311323290 Leite, M., Deus, A. M., Reis, L., & Vaz, M. F. (2018). Study of the influence of 3D printing parameters on the mechanical properties of PLA . Letcher, T., & Waytashek. (2014). Material Property Testing of 3D-Printed Specimen in PLA on an entry-level 3D Printer. Proceedings of the ASME 2014 International Mechanical Engineering Congress and Exposition , 1 – 8. doi: http://dx.doi.org/10.1115/IMECE2014-39379 McKeen, L. W. (2010). Introduction to fatigue and Tribology of Plastics and elastomers. In W. Andrew (Ed.), Fatigue and Tribological Properties of Plastics and Elastomers (second edi, p. 303). Elsevier Inc. Sardinha, M., Vicente, C. M. S., Frutuoso, N., Ribeiro, R., Reis, L., & Leite, M. (2020). Effect of the ironing process on ABS parts produced by FDM. Material Design & Processing Communications , 3 (2), 1 – 7. doi: 10.1002/mdp2.151 Torres, J., Cotelo, J., Karl, J., & Gordon, A. P. (2016). Mechanical Property Optimization of FDM PLA in Shear with Multiple Objectives. Rapid Prototyping Journal , July 2018 . doi: 10.1108/RPJ-07-2014-0083 Vicente, C. M. S., & Leite, M. (2020). Influence of fused deposition modeling parameters on the mechanical properties of ABS parts. Polymers for Advanced Technologies , 31 (3), 501 – 507. doi: 10.1002/pat.4787 Ziemian, S., Okwara, M., & Ziemian, C. W. (2015). Tensile and fatigue behavior of layered acrylonitrile butadiene styrene. Rapid Prototyping Journal , 21 (3), 270 – 278. doi: 10.1108/RPJ-09-2013-0086

Made with FlippingBook Ebook Creator