PSI - Issue 33
Hryhoriy Nykyforchyn et al. / Procedia Structural Integrity 33 (2021) 646–651 Hryhoriy Nykyforchyn, Leonid Unigovskyi, Olha Zvirko et al. / Structural Integrity Procedia 00 (2019) 000–000
651
6
Operational degradation of pipe steels decreases significantly characteristics of brittle fracture resistance including hydrogen induced cracking. In-bulk dissipated damaging is the main reason of a sensitivity of degraded steel to hydrogen embrittlement. The main peculiarities of experimental studies of influence of hydrogen or hydrogen-natural gas mixture on pipe steel durability consisted in the following: comparison of mechanical behaviour of as-received and exploited steels, as well as steel properties from different zones of weld joints and different parts of elbows; evaluation of characteristics of brittle fracture resistance and hydrogen induced cracking; exposing of pre-loaded specimens in hydrogen or hydrogen-natural gas mixture with the next prevention of hydrogen desorption before in-laboratory tests; determination of hydrogen concentration; microfractographic analysis. References Capelle, J., Dmytrakh, I., Azari, Z., Pluvinage, G., 2013. Evaluation of electrochemical hydrogen absorption in welded pipe with steel API X52. International Journal of Hydrogen Energy 38(33), 14356–14363. Filippov, G.A., Livanova, O.V., Chevskaya, O.N., Shabalov, I.P., 2013. Pipe steel degradation during operation and brittle failure resistance. Metallurgist 57, 612–622. Ju, J.-B., Lee, J.-S., Jang, J., 2007. Fracture toughness anisotropy in a API steel line-pipe. Materials Letters 61, 5178–5180. Kan, B., Yang, Z.X., Wang, Z., Li, J.X., Zhou, Q.J., Su, Y.J., Qiao, L.J., Volinsky, A.A., 2017. Hydrogen redistribution under stress-induced diffusion and corresponding fracture behaviour of a structural steel. Materials Science and Technology 33, 1539–1547. Kharchenko, L.E., Kunta, O.E., Zvirko, O.I., Savula, R.S., Duryahina, Z.A., 2016. Diagnostics of hydrogen macrodelamination in the wall of a bent pipe in the system of gas mains. Materials Science 51(4), 530–537. Maruschak, P., Danyliuk, I., Prentkovskis, O., Bishchak, R., Pylypenko, A., Sorochak A., 2014. Degradation of the main gas pipeline material and mechanisms of its fracture. Journal of Civil Engineering and Management, 20 (6), 864–872. McMahon Jr., C.J., 2001. Hydrogen-induced intergranular fracture of steels. Engineering Fracture Mechanics 68(6), 773–788. Mohtadi-Bonab, M. A., Ghesmati-Kucheki H., 2019. Important factors on the failure of pipeline steels with focus on hydrogen induced cracks and improvement of their resistance: Review paper. Metals and Materials International 25, 1109–1134. Nykyforchyn, H., Lunarska, E., Tsyrulnyk, O., Nikiforov, K., Gabetta G., 2009. Effect of the long-term service of the gas pipeline on the properties of the ferrite–pearlite steel. Materials and Corrosion 9, 716–725. Nykyforchyn, H.M., Zvirko, O.I., Tsyrulnyk, O.T., 2016. Hydrogen assisted macrodelamination in gas lateral pipe. Procedia Structural Integrity 2, 501–508. Nykyforchyn, H., Zvirko, O., Tsyrulnyk, O., Kret, N., 2017. Analysis and mechanical properties characterization of operated gas main elbow with hydrogen assisted large-scale delamination. Engineering Failure Analysis 82, 364–377. Nykyforchyn, H., Tsyrulnyk, O., Zvirko, O., Hredil, M., 2020. Role of hydrogen in operational degradation of pipeline steel. Procedia Structural Integrity 28, 896–902. Nykyforchyn, H., Zvirko, O., Dzioba, I., Krechkovska, H., Hredil, M., Tsyrulnyk, O., Student, O., Lipiec, S., Pala, R., 2021. Assessment of operational degradation of pipeline steels. Materials 14, 12:3247. Nykyforchyn, H., 2021. In-service degradation of pipeline steels, in: “Degradation assessment and failure prevention of pipeline systems”. In: Bolzon, G. Gabetta, G., Nykyforchyn, H. (Eds.). Lecture Notes in Civil Engineering, Springer International Publishing, Cham, 102, pp. 15–29. Ohaeri, E., Eduok, U., Szpunar, J., 2018. Hydrogen related degradation in pipeline steel: A review. International Journal of Hydrogen Energy 43:31, 14584–14617. Okipnyi, I., Poberezhny, L., Zapukhliak, V., Hrytsanchuk, A., Poberezhna, L., Stanetsky, A., Kravchenko, V., Rybitskyi, I., 2020. Impact of long term operation on the reliability and durability of transit gas pipelines. Strojnicky Casopis. 70, 115–126. Ronevich, J.A., Somerday, B.P., San Marchi, C.W., 2016. Effects of Microstructure Banding on Hydrogen Assisted Fatigue Crack Growth in X65 Pipeline Steels. International Journal of Fatigue 82(3), 497–504. Student, О.Z., Krechkovs’ka, H.V., Nykyforchyn, H.М., Kurnat, І.М., 2019. Fractographic criterion of attainment of the critical technical state by carbon steels. Materials Science 55(2), 160–167. Tsyrul’nyk, O. T., Slobodyan, Z. V., Zvirko, O. I., Hredil, M. I., Nykyforchyn, H. M., Gabetta, D., 2008. Influence of operation of Kh52 steel on corrosion processes in a model solution of gas condensate. Materials Science 44(5), 619–629. Tsyrul'nyk, O.T., Voloshyn, V.A., Petryna, D.Yu., Hredil, M.I., Zvirko, O.I., 2011. Degradation of properties of the metal of welded joints in operating gas mains. Materials Science 46(5), 628–632. Tsyrulnyk, O.T., Kret, N.V., Voloshyn, V.A., Zvirko, O.I., 2018. A procedure of laboratory degradation of structural steels. Materials Science 53(5), 674–683. Xue, L., Keim, V., Paredes, M., Nonn, A., Wierzbicki T., 2021. Anisotropic effects on crack propagation in pressurized line pipes under running ductile fracture scenarios. Engineering Fracture Mechanics 249, 107748. Zvirko, O.I., Kret, N.V., Tsyrulnyk, O.T., Vengrynyuk, T.P., 2018. Influence of textures of pipeline steels after operation on their brittle fracture resistance. Materials Science 54(3), 400–405. Zvirko, O., Gabetta, G., Tsyrulnyk, O., Kret, N., 2019. Assessment of in-service degradation of gas pipeline steel taking into account susceptibility to stress corrosion cracking. Procedia Structural Integrity 16, 121–125.
Made with FlippingBook Ebook Creator