PSI - Issue 33
Daniele Gaetano et al. / Procedia Structural Integrity 33 (2021) 1042–1054 Author name / Structural Integrity Procedia 00 (2019) 000–000
1054
13
approach. Composite Structures 233, 111625. Greco, F., Lonetti, P., Luciano, R., Nevone Blasi, P., Pranno, A., 2018b. Nonlinear effects in fracture induced failure of compressively loaded fiber reinforced composites. Composite Structures 189, 688–699. Hashagen, F., de Borst, R., 2000. Numerical assessment of delamination in fibre metal laminates. Computer Methods in Applied Mechanics and Engineering 185, 141–159. Herráez, M., Mora, D., Naya, F., Lopes, C.S., González, C., LLorca, J., 2015. Transverse cracking of cross-ply laminates: A computational micromechanics perspective. Composites Science and Technology 110, 196–204. Kouznetsova, V.G., Geers, M.G.D., Brekelmans, W.A.M., 2004. Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy. Computer Methods in Applied Mechanics and Engineering 193, 5525–5550. Laws, N., Dvorak, G.J., 1988. Progressive Transverse Cracking In Composite Laminates. Journal of Composite Materials 22, 900–916. Lonetti, P., Pascuzzo, A., 2016. A numerical study on the structural integrity of self-anchored cable-stayed suspension bridges. Frattura ed Integrità Strutturale 10, 358–376. Lonetti, P., Pascuzzo, A., 2020. A Practical Method for the Elastic Buckling Design of Network Arch Bridges. Int J Steel Struct 20, 311–329. Nguyen, V.P., Stroeven, M., Sluys, L.J., 2011. MULTISCALE CONTINUOUS AND DISCONTINUOUS MODELING OF HETEROGENEOUS MATERIALS: A REVIEW ON RECENT DEVELOPMENTS. J. Multiscale Modelling 03, 229–270. Nguyen, V.P., Stroeven, M., Sluys, L.J., 2012. An enhanced continuous–discontinuous multiscale method for modeling mode-I cohesive failure in random heterogeneous quasi-brittle materials. Engineering Fracture Mechanics 79, 78–102. Pascuzzo, A., Yudhanto, A., Alfano, M., Lubineau, G., 2020. On the effect of interfacial patterns on energy dissipation in plastically deforming adhesive bonded ductile sheets. International Journal of Solids and Structures 198, 31–40. Pegon, P., Anthoine, A., 1997. Numerical strategies for solving continuum damage problems with softening: Application to the homogenization of Masonry. Computers & Structures 64, 623–642. Pepe, M., Pingaro, M., Trovalusci, P., Reccia, E., Leonetti, L., 2019. Micromodels for the in-plane failure analysis of masonry walls: Limit Analysis, FEM and FEM/DEM approaches. Frattura ed Integrità Strutturale 14, 504–516. Phu Nguyen, V., Lloberas-Valls, O., Stroeven, M., Johannes Sluys, L., 2010. On the existence of representative volumes for softening quasi brittle materials – A failure zone averaging scheme. Computer Methods in Applied Mechanics and Engineering 199, 3028–3038. Verhoosel, C.V., Remmers, J.J.C., Gutiérrez, M.A., de Borst, R., 2010. Computational homogenization for adhesive and cohesive failure in quasi-brittle solids: COMPUTATIONAL HOMOGENIZATION FOR FAILURE IN QUASI-BRITTLE SOLIDS. Int. J. Numer. Meth. Engng. 83, 1155–1179. Xu, X.-P., Needleman, A., 1994. Numerical simulations of fast crack growth in brittle solids. Journal of the Mechanics and Physics of Solids 42, 1397–1434.
Made with FlippingBook Ebook Creator