PSI - Issue 33
Anna Fesenko et al. / Procedia Structural Integrity 33 (2021) 509–527 Author nam / Structural Integrity Pro edi 00 (2019) 000 – 000
517 9
j i
1
2
a
n
, ,
sin
W
* p F
2
p
2
i
G
1
n
j i
n 2 sin
,
, dr g r 1 21
( ) dr e dp r p
2 g r 21
(
)
r
1
n
1
The case of steady-state oscillations is considered below. With this aim the substitution p i , 2 2 p was made ( p − Laplace transform parameter, − circular frequency of steady -state oscillations).
2
a
a
n 1 4 2 cos n G G
n
, ;
cos
;
U
p
F
2 1
n
det
(20)
n
n
2
1
, ; r
, ; r
;
g
r dr g
r dr
11
11
1
n
1
2
a
*
n n 1 sin 2 sin n p G g
2
, ;
,
W
F
n
det
n
n
2
1
, ; r
, ; r
;
r dr g
r dr
21
21
1
n
1
2 2 2 * 1 2 0 1 1 2 K K * 4 2
2
0 2 1 1 2 1 2 1 1 K K 2 2 K K
det
1 1 2 2 n F ; (2) 2 2 1 2 0 1 1 2 * 0 2 1 1 ( ; ) 2 2 n F K K K K 1 2 2 2 * 1 * 2 1 1 ; 2 2
2 2 1 * 2 * ;
2 1 2
;
1
i i g r i 1 , ,
21 i n g
11 i n g
1, 2 i are corresponding to functions
, ; ,
, ; r ,
r
Functions
, can be found
1, 2
2 2 p .
in Appendix B with a replacement
6. Deriving and solving the integral equation. Since one boundary condition ( ,0, ) 0 U remained unfulfilled, one requires its fulfilment, using expression (19). The integral equation is obtained in the form
( , ; ) ( ) ( ; ), 0 F r r dr f
(21)
n
1 0
n
[0,1) r .
where unknown function ( ) r
( , 0) p
U r
has been extended with zero in the interval
Made with FlippingBook Ebook Creator