PSI - Issue 33
Anna Fesenko et al. / Procedia Structural Integrity 33 (2021) 509–527 Author name / Structural Integrity Procedia 00 (2019) 000 – 00
516 8
( 0, ) r r G G I ( 0, ) r r
matrix ( ) r С was found
1
1
S
S
Y Y ( ) r R p
R
С Y Y ( ) r ( ) r
( ) r
( ) r
p
p
p
The element form of Green matrix function (16) is derived
1
1
g g
g g
11
12
r
, 1
1
1
21
22
r
G
( , )
2
2
g g
g g
11
12
r
,
2
2
21
22
The solution (14) can be written in a form
1 1
2
1
0
( ) ( , ) ( ) g r r dr g r r dr U ( , ) ( ) ( )
U
11
11
p
p
(18)
2
1
0
( ) W g r r dr g r r dr W ( , ) ( ) ( , ) ( ) ( )
21
21
p
p
where functions 2
1
2
1
( , ), ( , ), ( , ) g r g r g r g r are given in the Appendix B. ( , ),
11
11
21
21
5. Inverse integral transform and the case of steady oscillations. After applying to the solution (18) the inverse Laplace and finite cos- , sin- transforms
n ( )cos
( )sin , n
( , ) U U
( ) 2
,
( , ) 2
U
W
W
0
p
p
p
p
p
n
n
1
1
n
n
displacements of the initial problem (5 - 8) take a form
j i
1 0
1
2
a
a
p h d
n
, ,
co
s
U
2 p F
1
p
2
4
i
G
G
1
n
j i
(19)
n 2 cos
,
, dr g r 1 11
p dr e dp
2 g r 11
( ) r
( ) r
1
n
1
Made with FlippingBook Ebook Creator