PSI - Issue 30

S.P. Yakovleva et al. / Procedia Structural Integrity 30 (2020) 201–208 Yakovleva S. P. et al. / Structural Integrity Procedia 00 (2020) 000–000

208

8

Kolachev B. А ., Livanov V. А ., ElaginV.I., 1981. Metal science andheat treatment of nonferrous metals. Metallurgy, Moscow, pp. 416. Kostyuk А .G., FrolovaV.V., 2001. Turbinesofthermalandnuclearelectric power plants. Publishing House of MPEI, Moscow, pp. 488. Liu J., Li J., HageF.S. et al., 2017. Correlative characterization on microstructure evolution of Ni-based K403 alloy during thermal exposure. J. Acta Mater 131, 169-186. Logunov А .V., 2017. Heat-resistantnickelalloysforbladesandwheelsofgasturbines. Publishing House «Gazoturbinnyetechnologii», Rybinsk, pp. 854. Logunov A., Zavodov S., Danilov D., 2019. The С hallenges in Development of Nickel-Based Heat-Resistant Superalloys for Gas Turbine Disks and Creation of a New Superalloy with Increased Operational Characteristics. J. Materials Today: Proceedings, 11, 459–464. McEvilyA., 2002. Metal Failures: Mechanisms, Analysis, Prevention. JohnWiley&Sons, New-York, pp. 336. Nazarov Е .G., MaslenkovS.B., 1970. Heattreatmentofausteniteheat-resistant steels and alloys. J. Metal science andheat treatment of metals, 3, 12 19. Ray A.K., Tiwari Y.N., Sinha R.K., Chaudhuri S., Singh R, 2000. Residual life prediction of service exposed main steam pipe of boilers in a thermal power plant/ J. Engineering Failure Analysis, 7, 359-376. ReedR.C., 2008. TheSuperalloys, FundamentalsandApplications. Cambridge, NewYork, pp. 390. Sims C., Stoloff N., Hagel W., 1987. Superalloys II: High-Temperature Materials for Aerospace and Industrial Power. Wiley-Interscience Publication John Wiley & Sons, New York, pp.640. Shirzadi A. and Jackson S., 2014. Structural Alloys for Power Plants: Operational Challenges and High-Temperature Materials. Elsevier, Amsterdam, Boston, Cambridge, pp. 516. Skelton R., 1988. Materials fatigue at high temperature. Metallurgy, Moscow, pp.343. Smirnov А ., Gerikeh B., Muravyev V., 2003. Diagnosingoftechnical installations of hazardous production facilities. Nauka, Novosibirsk, pp. 244. Tarasenko Yu.P., Berdnik О .B., Tsareva I.N., Krivina L. А ., 2008. Destruction of turbine working bladesdue to high-temperature fatigue. J. Izvestiya vuzov, 4, 132-138. Trzeszczy ń ski J., Stanek R., 2013. Failure Frequency Analysis of a 200 MW Power unit critical elements as an Important Component of a Service Life Prediction Methodology. J. Power Engineering, 6, 505-508. Viswanathan R., 1989. Damage Mechanisms and Life Assessment of High Temperature Components. Asm Internationa, l, – 497 p. Xia P.C., Yu J.J., Sun X.F. et al., 2007. The influence of thermal exposure on the microstructure and stress rupture property of DZ951 nickel-base alloy. Journal of Alloys and Compounds, 443, 125–131.

Made with FlippingBook - professional solution for displaying marketing and sales documents online