PSI - Issue 3
Christos F. Markides et al. / Procedia Structural Integrity 3 (2017) 334–345 Christos F. Markides, Stavros K. Kourkoulis / Structural Integrity Procedia 00 (2017) 000–000
339
6
Then, introducing Eq.(23) in Eqs.(5b), substituting in the left-hand sides of Eqs.(20) and performing the inte grations, the left-hand sides of Eqs.(20) are written in series form in terms of e ikθ . Properly passing from e ikθ to e imθ and comparing terms of e imθ on both sides of Eqs.(20), a m are obtained as (all other terms are found to be zero):
a b a b
1 P R 2 sin 2
sin 2 cos 2
i2
e
o
1
o i2
(24)
2
sin 2 e
sin 2
c
o
o
o
o
i 2
o
o
o
o
2
2
2sin
2sin
2
1
o
o
1 P R
sin 2 cos 2
sin 4
1
3
i2
sin 2
sin 2
e
c
o
o
o
i 6
o
o
o
o
2 2sin sin 4 2cos 2 sin 4 sin 2 cos 4 o 2
4
3
i2
e
o
i 2
e
o
o
o
o
o
o
2
2
3
2sin
o
a b
sin m 1
sin m 1
1 P R
1
m
o
o
c
i 2 m m 1
2 m 1 m 1 cos 2 sin m 1 2sin 2 cos m 1 o 2sin
m
(25)
o i m 1
o
o
o
o
1 cos m e
2
4 m 1
c 1 P R i 2 m m 1 sin m 1
sin m 1
1
o
o
m 5, 7, ...
2 2sin m 1 cos 2 sin m 1 2sin 2 cos m 1 o m 1
i m 1
o
o
o
o
o
1 cos m e
2
4 m 1
Eventually, combining Eqs.(25) and (22), two systems are induced providing the real and imaginary parts of the non-zero coefficients A m and B m (m=3, 5, 7,…) of Φ 1 and Φ 2 , as: m m 1 m 2 m m m m 1 1 m 2 2 m m 1 t A 1 t B a 1 t A 1 t B b and m m 1 m 2 m m m m 1 1 m 2 2 m m 1 t A 1 t B a 1 t A 1 t B b (26)
2.2. The displacement field on the orthotropic disc Combining Eqs.(14), (16) and (26) the displacement components are written as: 1 0 1 1 1 2 0 2 1 2 1 3 13 1 m 1m 1 2 3 23 2 m 2m 2 m 5,7,9,... m 5,7,9,... u x, y 2 p A p A z p B p B z 2 p A P z A P z p B P z B P z
(27)
1 0 v x, y 2 q A q A z q B q B z 1 1 1 2 0 2 1 2
(28)
1 3 13 1 2 q A P z
A P z q B P z m 1m 1 2 3 23 2
m 2m 2 B P z
m 5,7,9,...
m 5,7,9,...
and it is seen that are not completely determined due to the indeterminacy in A 0 , B 0 , A 1 and B 1 . In this direction, it is mentioned that in the present problem the disc’s center should remain fixed, i.e. it should hold that u(0,0)=v(0,0)=0. But Eqs.(17), for z 1 =z 2 =0, yields P 1m (0)=P 2m (0)=0 (m=3,5,7,9,…); hence, by Eqs.(27), (28) it follows that the real parts of the expressions p 1 A 0 +p 2 B 0 and q 1 A 0 +q 2 B 0 should also be zero, which could be the case if:
(29)
0 0 A B 0
Made with FlippingBook - professional solution for displaying marketing and sales documents online