PSI - Issue 3
5
Christos F. Markides et al. / Procedia Structural Integrity 3 (2017) 334–345 Christos F. Markides, Stavros K. Kourkoulis / Structural Integrity Procedia 00 (2017) 000–000
338
m 2
m 2
z A A z 1 1 0 1 1
A P z , m 1m 1
z B B z 2 2 0 1 2
(16)
m 2m 2 B P z
where
R 1 i m 1
m
m
(17)
2 z R 1 2 2 2 z R 1 2 z
2
P z
z
1m,2m 1,2
1,2
1,2
1,2
1,2
1,2
1,2
m
1,2
The coefficients of Φ 1 and Φ 2 of Eqs.(16) will be determined by fulfilling the boundary conditions of the problem. In this direction, combining Eqs.(7), (12) and (13), yields: 2 2 x 1 1 1 2 2 2 y 1 1 2 2 xy 1 1 1 2 2 2 2 z z , 2 z z , 2 z z (18) Introducing Eqs.(18) in Eqs.(5a) and integrating along L with respect to S one obtains the Cartesian components of the resultant force per unit thickness over an arc of length S of L as: S S 1 1 2 2 n 1 1 1 2 2 2 n 0 0 2 z z Y dS, 2 z z X dS (19) Substituting in the left-hand sides of Eqs.(19) from Eqs.(16) (taking into account that when z is on L it holds that z 1,2 =R(1–iμ 1,2 )s/2+R(1+iμ 1,2 )s/2, so that from Eqs.(17) it is P 1m,2m = – s m – t 1,2 m s – m , where t 1,2 =(1+iμ 1,2 )/ (1–iμ 1,2 )), considering small s=e iθ , and writing the right hand sides of Eqs.(19) in Fourier series form: S S m m m m n 0 m m n 0 m m m 1 m 1 0 0 Y dS a a s a s , X dS b b s b s (20) And then comparing the coefficients of s ±m of the same order on both sides of the resulting expressions, the following systems are obtained for the coefficients of Φ 1 and Φ 2 (Lekhnitskii 1968): 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 2 2 2 2 1 1 1 2 1 1 1 2 1 1 A B A B a a R A B A B a a Ri b b R , m 1 A B A B b b Ri (21)
m
m
m m m 1 A B A t
B t
a
m 2
m
m m m 1 A B A t m 2 m 1 1 m 2 2 B t m m m m m m 1 A B A t m 2 m m m m 1 A B A t m 2 m 1 1 m 2 2 m b B t a B t b
,
m 2,3,...
(22)
A 0 and B 0 (for m=0) remain arbitrary, while as it can be seen from Eqs.(21) 1 1 1 1 A , B , A and B are determined apart from an arbitrary real constant. Thus, the problem of obtaining the coefficients of Φ 1 , Φ 2 is reduced to the determination of a m and b m . In this direction the left-hand sides of Eqs.(20) must be expressed in series form also. Bearing in mind Eqs.(5b), σ r of Eq.(1) is first expanded in Fourier series form, as:
P
2 sin 2
sin 2 cos 2
i 2
e
o
o i2 sin 2 e
i 2
c 2
sin 2
e
o
o
o
o
r
o
o
o
o
2
2 2sin sin 2 cos 2
2
2sin
o
o
sin k
i2
e
k 3
o
o i2 sin 2 e
i 2
sin 2
e
o
o
o
o
o
o
2 2sin sin k k c o
2
k
(23)
os 2 sin k 2sin 2 cos k
sin k
1
ik
ik
ik
e
e
e
o
o
o
o
o
o
o
o
k 4 k sin k k cos 2 sin k 2sin 2 cos k 2
2
k
2sin
o
1
ik
o e e ik
ik
e
o
o
o
o
o
o
2
2
k
2sin
4 k
o
Made with FlippingBook - professional solution for displaying marketing and sales documents online