PSI - Issue 26

E. Solfiti et al. / Procedia Structural Integrity 26 (2020) 187–198 E. Solfiti and F. Berto / Structural Integrity Procedia 00 (2019) 000–000

198

12

Olives, R., Mauran, S., 2001. A highly conductive porous medium for solid-gas reactions: E ff ect of the dispersed phase on the thermal tortuosity. Transport in Porous Media 43, 377–394. doi: 10.1023/A:1010780623891 . Olsen, L.C., Seeman, S.E., Scott, H.W., Douglas, M., Company, A., 1969. Expanded Pyrolytic Graphite : Structural and Transport . Otte, H.M., Montague, W.G., Welch, D.O., 1963. X-ray di ff ractometer determination of the thermal expansion coe ffi cient of aluminum near room temperature. Journal of Applied Physics 34, 3149–3150. doi: 10.1063/1.1729148 . Papyex ® , . Mersen. URL: https://www.mersen.com/sites/default/files/publications-media/ 6-gs-papyex-flexible-graphite-mersen.pdf . Parker, W., Jenkins, R., Butler, C., Abbott, G., 1961. Flash method of determining thermal di ff usivity, heat capacity, and thermal conductivity. Journal of applied physics 32, 1679–1684. Picard, S., Burns, D.T., Roger, P., 2006. Measurement of the Specific Heat Capacity of Graphite. Bureau International des Poids et Mesures , 1 – 31. Powell, R., Touloukian, Y., 1973. Thermal conductivities of the elements. Science 181, 999–1008. Powell, R.W., 1937. The thermal and electrical conductivities of a sample of Acheson graphite from 0°C. to 800°C. Proceedings of the Physical Society 49, 419–426. doi: 10.1088/0959-5309/49/4/312 . Py, X., Olives, R., Mauran, S., 2001. Para ffi n / porous-graphite-matrix composite as a high and constant power thermal storage material. International Journal of Heat and Mass Transfer 44, 2727–2737. doi: 10.1016/S0017-9310(00)00309-4 . Reynolds, W.N., 1965. The mechanical properties of reactor graphite. Philosophical Magazine 11, 357–368. doi: 10.1080/14786436508221862 . Sanchez-Coronado, J., Chung, D.D., 2003. Thermomechanical behavior of a graphite foam. Carbon 41, 1175–1180. doi: 10.1016/ S0008-6223(03)00025-3 . Savchenko, D.V., Ionov, S.G., Sizov, A.I., 2010. Properties of carbon-carbon composites based on exfoliated graphite. Inorganic Materials 46, 132–138. doi: 10.1134/S0020168510020081 . Savvatimskiy, A.I., 2005. Measurements of the melting point of graphite and the properties of liquid carbon (a review for 1963-2003). Carbon 43, 1115–1142. doi: 10.1016/j.carbon.2004.12.027 . Seldin, E.J., 1966. Stress-strain properties of polycrystalline graphites in tension and compression at room temperature. Carbon 4, 177–191. doi: 10.1016/0008-6223(66)90079-0 . Shane, J.H., Russell, R.J., Bochman, R.A., 1968. Flexible graphite material of expanded particles compressed together. US Patent 3,404,061. Sigraflex ® , . SGL Carbon. URL: www.sglcarbon.com/en/markets-solutions/component/ sigraflex-universal-and-sigraflex-universal-pro/ . Song, Y.T., Yao, D.M., Wu, S.T., Weng, P.D., 2005. Thermal and mechanical analysis of the EAST plasma facing components. Fusion Engineering and Design 75-79, 499–503. doi: 10.1016/j.fusengdes.2005.06.187 . Sykam, N., Rao, G.M., 2018. Lightweight flexible graphite sheet for high-performance electromagnetic interference shielding. Materials Letters 233, 59–62. doi: 10.1016/j.matlet.2018.08.066 . Tanaka, T., 1974. The thermal and electrical conductivities of LaB6 at high temperatures. Journal of Physics C: Solid State Physics 7. doi: 10. 1088/0022-3719/7/9/001 . Taylor, R., Gilchrist, K.E., Poston, L.J., 1968. Thermal conductivity of polycrystalline graphite. Carbon 6, 537–544. doi: 10.1016/ 0008-6223(68)90093-6 . Toda, H., Tsubone, K., Shimizu, K., Uesugi, K., Takeuchi, A., Suzuki, Y., Nakazawa, M., Aoki, Y., Kobayashi, M., 2013. Compression and recovery micro-mechanisms in flexible graphite. Carbon 59, 184–191. URL: http://dx.doi.org/10.1016/j.carbon.2013.03.008 , doi: 10.1016/j.carbon.2013.03.008 . Tsang, D.K., Marsden, B.J., Fok, S.L., Hall, G., 2005. Graphite thermal expansion relationship for di ff erent temperature ranges. Carbon 43, 2902–2906. doi: 10.1016/j.carbon.2005.06.009 . Tyler, W.W., Wilson, A.C., 1953. Thermal conductivity, electrical resistivity, and thermoelectric power of graphite. Physical Review 89, 870–875. doi: 10.1103/PhysRev.89.870 . Uher, C., Sander, L.M., 1983. Unusual temperature dependence of the resistivity of exfoliated graphites. Physical Review B 27, 1326–1332. doi: 10.1103/PhysRevB.27.1326 . Wang, F.Q., Zhang, L.Z., Li, Y., Gong, B.Y., Xu, H.Y., Xiao, G.K., Cai, R.L., 2015. Research on Compression Performance of Flexible Graphite Packing Rings with Di ff erent Density. Procedia Engineering 130, 644–651. doi: 10.1016/j.proeng.2015.12.287 . Wei, X.H., Liu, L., Zhang, J.X., Shi, J.L., Guo, Q.G., 2010. Mechanical, electrical, thermal performances and structure characteristics of flexible graphite sheets. Journal of Materials Science 45, 2449–2455. doi: 10.1007/s10853-010-4216-y . Xi, X., Chung, D.D., 2019. Electret, piezoelectret, dielectricity and piezoresistivity discovered in exfoliated-graphite-based flexible graphite, with applications in mechanical sensing and electric powering. Carbon 150, 531–548. URL: https://doi.org/10.1016/j.carbon.2019.05. 040 , doi: 10.1016/j.carbon.2019.05.040 . Xiao, L., Chung, D.D., 2016. Mechanical energy dissipation modeling of exfoliated graphite based on interfacial friction theory. Carbon 108, 291–302. doi: 10.1016/j.carbon.2016.06.098 . Yoshida, A., Hishiyama, Y., Inagaki, M., 1991. Exfoliated graphite from various intercalation compounds. Carbon 29, 1227–1231. doi: 10.1016/ 0008-6223(91)90040-P . Ziman, J.M., Levy, P.W., 1961. Electrons and Phonons . doi: 10.1063/1.3057244 .

Made with FlippingBook - Share PDF online