PSI - Issue 26

E. Solfiti et al. / Procedia Structural Integrity 26 (2020) 187–198 E. Solfiti and F. Berto / Structural Integrity Procedia 00 (2019) 000–000

197

11

Chung, D.D., 2012. Carbon materials for structural self-sensing, electromagnetic shielding and thermal interfacing. Carbon 50, 3342–3353. URL: http://dx.doi.org/10.1016/j.carbon.2012.01.031 , doi: 10.1016/j.carbon.2012.01.031 . Chung, D.D., 2014. Interface-derived extraordinary viscous behavior of exfoliated graphite. Carbon 68, 646–652. URL: http://dx.doi.org/ 10.1016/j.carbon.2013.11.045 , doi: 10.1016/j.carbon.2013.11.045 . Davis, J.R., et al., 2001. Copper and copper alloys. ASM international. Dowell, M., Howard, R., 1986. Tensile and compressive properties of flexible graphite foils. Carbon 24, 311–323. Fu, Y., Hou, M., Liang, D., Yan, X., Fu, Y., Shao, Z., Hou, Z., Ming, P., Yi, B., 2008. The electrical resistance of flexible graphite as flowfield plate in proton exchange membrane fuel cells. Carbon 46, 19–23. doi: 10.1016/j.carbon.2007.10.020 . Gandhi, J., Pathak, A.V., 2012. Performance evaluation of thermal interface material for space applications. Applied Mechanics and Materials 110-116, 135–141. doi: 10.4028/www.scientific.net/AMM.110-116.135 . Grafoil ® , . NeoGraf Solutions LLC. URL: www.neograf.com/products/grafoil-flexible-graphite/ . Gu, J., Leng, Y., Gao, Y., Liu, H., Kang, F., Shen, W., 2002. Fracture mechanism of flexible graphite sheets. Carbon 40, 2169–2176. doi: 10.1016/ S0008-6223(02)00075-1 . Hahn, T.A., 1970. Thermal expansion of copper from 20 to 800 k - standard reference material 736. Journal of Applied Physics 41, 5096–5101. doi: 10.1063/1.1658614 . Harrison, J.W., 1977. Absolute measurements of the coe ffi cient of thermal expansion of pyrolytic graphite from room temperature to 1200 k and a comparison with current theory. High temperatures-High Pressures 9, 211–229. Hashin, Z., Shtrikman, S., 1963. A variational approach to the theory of the elastic behaviour of multiphase materials. Journal of the Mechanics and Physics of Solids 11, 127–140. doi: 10.1016/0022-5096(63)90060-7 . Ho, C.Y., Powell, R.W., Liley, P.E., 1972. Thermal conductivity of the elements. Journal of Physical and Chemical Reference Data 1, 279–421. Hoi, Y.M., Chung, D.D., 2002. Flexible graphite as a compliant thermoelectric material. Carbon 40, 1134–1136. doi: 10.1016/S0008-6223(01) 00260-3 . Ionov, S.G., Avdeev, V.V., Kuvshinnikov, S.V., Pavlova, E.P., 2000. Physical and chemical properties of flexible graphite foils. Molecular Crystals and Liquid Crystals Science and Technology Section A: Molecular Crystals and Liquid Crystals 340, 349–354. doi: 10.1080/ 10587250008025491 . Jenkins, G.M., 1962. Analysis of the stress-strain relationships in reactor grade graphite. British Journal of Applied Physics 13, 30–32. doi: 10. 1088/0508-3443/13/1/307 . Jenkins, G.M., 1964. The thermal expansion of polycrystalline graphite. Journal of Nuclear Materials 13, 33–39. doi: 10.1016/0022-3115(64) 90064-9 . Jenkins, G.M., Williamson, G.K., 1963. Deformation of graphite by thermal cycling. Journal of Applied Physics 34, 2837–2841. doi: 10.1063/ 1.1729818 . Kellett, E.A., Richards, B.P., 1964. The thermal expansion of graphite within the layer planes. Journal of Nuclear Materials 12, 184–192. doi: 10. 1016/0022-3115(64)90139-4 . Kelly, B.T., 1981. Physics of graphite . Khelifa, M., Fierro, V., Macutkevicˇ, J., Celzard, A., 2018. Nanoindentation of flexible graphite: experimental versus simulation studies. Advanced materials science , 1–11. Kobayashi, M., Toda, H., Takeuchi, A., Uesugi, K., Suzuki, Y., 2012. Three-dimensional evaluation of the compression and recovery behavior in a flexible graphite sheet by synchrotron radiation microtomography. Materials Characterization 69, 52–62. URL: http://dx.doi.org/10. 1016/j.matchar.2012.04.008 , doi: 10.1016/j.matchar.2012.04.008 . Leng, Y., Gu, J., Cao, W., Zhang, T.Y., 1998. Influences of density and flake size on the mechanical properties of flexible graphite. Carbon 36, 875–881. doi: 10.1016/S0008-6223(97)00196-6 . Liu, R., Chen, J., Tan, M., Song, S., Chen, Y., Fu, D., 2013. Anisotropic high thermal conductivity of flexible graphite sheets used for advanced ther mal management materials. ICMREE 2013 - Proceedings: 2013 International Conference on Materials for Renewable Energy and Environment 1, 107–111. doi: 10.1109/ICMREE.2013.6893625 . Luo, X., Chugh, R., Biller, B.C., Hoi, Y.M., Chung, D.D., 2002. Electronic applications of flexible graphite. Journal of Electronic Materials 31, 535–544. doi: 10.1007/s11664-002-0111-x . Luo, X., Chung, D.D., 2000. Vibration damping using flexible graphite. Carbon 38, 1510–1512. doi: 10.1016/S0008-6223(00)00111-1 . Luo, X., Chung, D.D., 2001. Flexible graphite under repeated compression studied by electrical resistance measurements. Carbon 39, 985–990. doi: 10.1016/S0008-6223(00)00213-X . Lutcov, A.I., Volga, V.I., Dymov, B.K., 1970. Thermal conductivity, electric resistivity and specific heat of dense graphites. Carbon 8, 753–760. doi: 10.1016/0008-6223(70)90100-4 . Marotta, E.E., Mazzuca, S.J., Norley, J., 2005. Thermal joint conductance for flexible graphite materials: Analytical and experimental study. IEEE Transactions on Components and Packaging Technologies 28, 102–110. doi: 10.1109/TCAPT.2004.843153 . Martin, W.H., Entwisle, M.F., 1963. Thermal expansion of graphite over di ff erent temperature ranges. Journal of Nuclear Materials 10, 1–7. doi: 10.1016/0022-3115(63)90111-9 . Mason, I., Knibbs, R., 1962. The thermal conductivity of artificial graphites and its relationship to electrical resistivity . Morgan, W.C., 1972. Thermal expansion coe ffi cients of graphite crystals. Carbon 10, 73–79. doi: 10.1016/0008-6223(72)90011-5 . Nelson, J.B., Riley, D.P., 1945. The thermal expansion of graphite from 15°c. to 800°c.: Part I. Experimental. Proceedings of the Physical Society 57, 477–486. doi: 10.1088/0959-5309/57/6/303 . Nelson, J.B., Riley, D.P., Tolpadi, S.S., Llewellyn, J.P., Smith, T., 1945. The thermal expansion of graphite: part II. Theoretical . Nix, F.C., MacNair, D., 1941. The thermal expansion of pure metals: Copper, gold, aluminum, nickel, and iron. Physical Review 60, 597–605. doi: 10.1103/PhysRev.60.597 .

Made with FlippingBook - Share PDF online