PSI - Issue 24
Andrea Chiappa et al. / Procedia Structural Integrity 24 (2019) 898–905 Andrea Chiappa et al./ Structural Integrity Procedia 00 (2019) 000 – 000
904
7
Acknowledgements
The authors would like to express their gratitude to ANSYS® for granting the software licenses that allowed to achieve the results reported. This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 and 2019-2020 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
References
Bessette, D. et al., 2015. Design of a Nb3Sn CICC to withstand the 6000electromagnetic cycles of the ITER central solenoid. IEEE Trans. Appl.Supercond. 23. Biancolini, M. E., 2011. Mesh morphing and smoothing by means of radial basis functions (RBF): a practical example using fluent and RBF morph, in “Handbook of research on computational science and engineering: theory and practice”. In: IGI Global, pp. 347 – 380. Biancolini, M. E., 2018. Fast radial basis functions for engineering applications. Springer. ISBN 978-3-319-75009-5. Biancolini, M. E., Bonifetto, R., Chiappa, A., Giorgetti, F., Corato, V., Muzzi, L., Turtù, S., 2018. Mechanical Analysis of the ENEA TF Coil Proposal for the EU DEMO Fusion Reactor. IEEE Transactions on Applied Superconductivity 28, 4. Biancolini, M. E., Brutti, C., Giorgetti, F., Muzzi, L., Turtù, S., Anemona, A., 2015. A new meshless approach to map electromagnetic loads for FEM analysis on DEMO TF coil system. Fusion Engineering and Design 100, 226 – 238. Biancolini, M. E., Cella, U., Groth, C., Genta, M., 2016. Static aeroelastic analysis of an aircraft wind- tunnel model by means of modal RBF mesh updating. Journal of Aerospace Engineering, 29, 6. http://doi.org/10.1061/(ASCE)AS.1943-5525.000062 Biancolini, M. E., Costa, E., Cella, U., Groth, C., Veble, G., Andrejasic, M., 2016. Glider fuselage-wing junction optimization using CFD and RBF mesh morphing. Aircraft Engineering and Aerospace Technology 88, pp. 740 – 752. http://doi.org/10.1108/AEAT-12-2014-0211 Biancolini, M. E., Chiappa, A., Giorgetti, F., Groth, C., Cella, U., Salvini, P., 2018. A balanced load mapping method based on radial basis functions and fuzzy sets. International Journal for Numerical Methods In Engineering, 115, 12, 1411 – 1429. Biancolini, M., Salvini, P., 2012. Radial basis functions for the image analysis of deformations, in: “Computational Modellin g of Objects Repre sented in Images: Fundamentals, Methods and Applications III Proceedings of the International Symposium”. In: CRC Press, pp. 361 – 365. Buhmann, M. D., 2004. Radial basis functions. University Press, Cambridge. Chiappa, A., Salvini, P., Brutti, C., Biancolini, M. E., 2019. Upscaling 2D finite element analysis stress results using radial basis functions. Computers & Structures, 220, pp. 131 – 143. Corato, V., Bagni, T., Biancolini, M. E., Bonifetto, R., Bruzzone, P., Bykovsky, N., Ciazynski, D., Coleman, M., Della Corte, A., Dembkowska, A., Di Zenobio, A., Eisterer, M., Fietz, W. H., Fischer, D. X., Gaio, E., Giannini, L., Giorgetti, F., Heller, R., Ivashov, I., B. Lacroix, B., Lewandowska, M., Maistrello, A., Morici, L., Muzzi, L., Nijhuis, A., Nunio, F., Panin, A., Sarasola, X., Savoldi, L., Sedlak, K., Stepanov, B., Tomassetti, G., Torre, A., Turtù, S., Uglietti, D., Vallcorba, R., Weiss, K.-P., Wesche, R., Wolf, M. J., Yagotintsev, K., Zani, L., Zanino, R., 2018. Progress in the design of the superconducting magnets for the EU DEMO. Fusion Engineering and Design 136, 1597 – 1604. Corato, V. et al., 2016. Common operating values for the DEMO Magnet design for2016, EUROfusion IDM server, http://www.euro fusionscipub.org/archives/eurofusion/common-operating-values-for-demo-magnets-design-for-2016-2 Davis, P. J., 1963. Interpolation and approximation. Blaisdell, London. Della Corte, A. et al., 2010. Successful performances of the EU-AltTF sample, a largesize Nb3Sn cable-in-conduit conductor with rectangular geometry. Supercond. Sci. Technol. 23. Di Zenobio, A., Albanese, R., A. Anemona, Biancolini, M. E., Bonifetto, R., Brutti, C., Corato, V., Crisanti, F., Della Corte, A., De Marzi, G., Fiamozzi Zignani, C., Giorgetti, F., Messina, G., Muzzi, L., Savoldi, L., Tomassetti, G., Turtù, S., Villone, F., Zappatore, A., 2017. DTT device: Conceptual design of the superconducting magnet system. Fusion Engineering and Design 122, 299 – 312. ENEA, DTT Divertor Tokamak Test facility Interim Design Report, April 2019 ENEA, DTT Divertor Tokamak Test facility Project Proposal, July 2015 Federici, G. et al., 2016. Overview of the design approach and prioritization of R & Dactivities towards an EU DEMO. Fusion Eng. Des. 109 – 111, 1464 – 1474, Part B. Giorgetti, F., 2018. An integrated multi-physics tool for the mechanical analysis of the fusion reactors superconducting magnets. PhD thesis. Groth, C., Chiappa, A., Biancolini, M. E., 2018. Shape optimization using structural adjoint and RBF mesh morphing. Procedia Structural Integrity 8, pp. 379 – 389. http://doi.org/10.1016/j.prostr.2017.12.03 ITER, Advantages of fusion. https://www.iter.org/sci/Fusion (Accessed January 15, 2019). ITER magnet structural design criteria, Part 1: Main structural components and welds, v2.0, ITER D 2FMHHS, 2012. Mazzitelli, G., Apicella, M. L., Ciattaglia, S., Colangeli, A., Maddaluno, Marocco, D., Martone, R., Villari, R., 2017. The DTT device: safety, fuelling and auxiliary systems. Fusion Engineering and Design 122, 375 – 381. Muzzi, L., De Marzi, G., Di Zenobio, A., Della Corte, A., 2015. Cable-in-conduitconductors: lessons from the recent past for future
developments with low and high temperature superconductors. Top. Rev. Supercond. Sci. Technol. 28. Roadmap- EUROfusion. https://www.euro-fusion.org/eurofusion/roadmap/ (Accessed July 26, 2019).
Made with FlippingBook - Online catalogs