PSI - Issue 2_B
L. Esposito / Procedia Structural Integrity 2 (2016) 919–926 L. Esposito/ Structural Integrity Procedia 00 (2016) 000–000
925 7
a)
b)
Fig. 7: Distribution at failure of the stress triaxiality a) and equivalent creep strain b) over the FGHAZ.
Fig. 8: Reduced creep life of crosswelds due to the type IV fracture occurrence.
References
Abe, F., Tabuchi, M., Kondo, M., Tsukamoto, S., 2007. Suppression of Type IV fracture and improvement of creep strength of 9Cr steel welded joints by boron addition. Int. J. of Pressure Vessels and Piping 84, 44-52. Bonora, N., Esposito, L., 2010. Mechanism Based Creep Model Incorporating Damage. Journal of Engineering Materials and Technology 132(2), 1013-1017. Bonora, N., Esposito, L., Dichiaro, S., 2014. Predicting creep rupture using damage mechanics. Proceedings of the 2014 Pressure Vessels & Piping Conference, Anahaim, California, USA, ASME. Eggeler, G., et al., 1994. Analysis of creep in a welded 'P91" pressure vessel. Int. J. of Pressure Vessels and Piping 60, 237–257. Esposito, L., Bonora, N., 2009. Time independent formulation for creep damage modeling in metals. Material Science and Engineering A 510 511(510-511), 207–213. Esposito, L., Bonora, N., 2011. A primary creep model for Class M materials. Material Science and Engineering A 528, 5496–5501. Esposito, L., Dichiaro, S., 2013. Modeling of multiaxial stress effects on the creep resistance of high chromium steel. ASME Pressure Vessels & Piping Conference, Paris.
Made with FlippingBook Digital Publishing Software