PSI - Issue 2_B

Jaime Planas et al. / Procedia Structural Integrity 2 (2016) 3676–3683 J. Planas et al. / Structural Integrity Procedia 00 (2016) 000–000

3683

8

Acknowledgements

The authors gratefully acknowledge the Secretar´ıa de Estado de Investigacio´n, Desarrollo e Innovacio´n of the Spanish Ministerio de Econom´ıa y Competitividad for providing financial support for this work under the project BIA2014-54916-R.

References

Bazˇant, Z.P., Ohtsubo, H., Aoh, K., 1979. Stability and post-critical growth of a system of cooling or shrinkage cracks. International Journal of Fracture 15, 443–456. doi:10.1007 / BF00023331. Białas, M., Majerus, P., Herzog, R., Mro´z, Z., 2005. Numerical simulation of segmentation cracking in thermal barrier coatings by means of cohesive zone elements. Materials Science and Engineering: A 412, 241–251. doi:10.1016 / j.msea.2005.08.208. Bisschop, J., Wittel, F.K., 2011. Contraction gradient induced microcracking in hardened cement paste. Cement and Concrete Composites 33, 466–473. doi:10.1016 / j.cemconcomp.2011.02.004. Bolander Jr., J.E., Berton, S., 2004. Simulation of shrinkage induced cracking in cement composite overlays. Cement and Concrete Composites 26, 861–871. doi:10.1016 / j.cemconcomp.2003.04.001. Costanzo, F., 1998. A continuum theory of cohesive zone models: deformation and constitutive equations. International Journal of Engineering Science 36, 1763–1792. URL: http://www.sciencedirect.com/science/article/pii/S0020722598000251 , doi:http: // dx.doi.org / 10.1016 / S0020-7225(98)00025-1. Idiart, A., Bisschop, J., Caballero, A., Lura, P., 2012. A numerical and experimental study of aggregate-induced shrinkage cracking in cementitious composites. Cement and Concrete Research 42, 272–281. doi:10.1016 / j.cemconres.2011.09.013. Jenkins, D.R., 2005. Optimal spacing and penetration of cracks in a shrinking slab. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics 71. Jenkins, D.R., 2009. Determination of crack spacing and penetration due to shrinkage of a solidifying layer. International Journal of Solids and Structures 46, 1078–1084. doi:10.1016 / j.ijsolstr.2008.10.017. Jiang, C.P., Wu, X.F., Li, J., Song, F., Shao, Y.F., Xu, X.H., Yan, P., 2012. A study of the mechanism of formation and numerical simulations of crack patterns in ceramics subjected to thermal shock. Acta Materialia 60, 4540–4550. doi:10.1016 / j.actamat.2012.05.020. Planas, J., Elices, M., Guinea, G.V., Gomez, F.J., Cendon, D.A., Arbilla, I., 2003. Generalizations and specializations of cohesive crack models. Engineering Fracture Mechanics 70, 1759–1776. doi:10.1016 / s0013-7944(03)00123-1. Sancho, J.M., Planas, J., Cendon, D.A., Reyes, E., Galvez, J.C., 2007a. An embedded crack model for finite element analysis of concrete fracture. Engineering Fracture Mechanics 74, 75–86. doi:10.1016 / j.engfracmech.2006.01.015. Sancho, J.M., Planas, J., Fathy, A.M., Galvez, J.C., Cendon, D.A., 2007b. Three-dimensional simulation of concrete fracture using embedded crack elements without enforcing crack path continuity. International Journal for Numerical and Analytical Methods in Geomechanics 31, 173–187. doi:10.1002 / nag.540. Sanz, B., Planas, J., Sancho, J.M., 2013. An experimental and numerical study of the pattern of cracking of concrete due to steel reinforcement corrosion. Engineering Fracture Mechanics 114, 26–41. doi:10.1016 / j.engfracmech.2013.10.013.

Made with FlippingBook Digital Publishing Software