PSI - Issue 2_A
Christos F. Markides et al. / Procedia Structural Integrity 2 (2016) 2659–2666 Christos F. Markides, Stavros K. Kourkoulis / Structural Integrity Procedia 00 (2016) 000–000
2663
5
When z=re iθ is on L (r=R), then z –1 ]/ 2 with s=e iθ . Substituting in Eqs.(16) from Eqs. (17), (18), expanding the right-hand sides of Eqs.(16) in Fourier series form and comparing coefficients of the same order of s=e iθ , the following systems of equations are obtained for determining the real ( ) and imaginary ( ) parts of coefficients of Φ 1 and Φ 2 of Eqs.(17): n n 2 2 2 n n n n 1 1 1 n n n n n n 2 1 2 1 1 2 n n 2 2 2 n n n n 1 1 1 n n n n n n 2 1 2 1 1 2 1 t 1 t a b 1 t 1 t A B 1 t 1 t 1 t 1 t 1 t 1 t a b 1 t 1 t A , n 3,5, ... B 1 t 1 t 1 t 1 t (19) 1,2 =R[(1– iμ 1,2 )+(1+ iμ 1,2 )s
with t 1,2 =(1+ iμ 1,2 ) / (1– iμ 1,2 ) and:
a b
1 P R
e
sin 2 cos 2
sin 4
1
3
i2
sin 2
sin 2
e
c
o
o
o
o
o
o
o
i 6
2 2sin sin 4 2cos 2 sin 4 sin 2 cos 4 o 2
4
3
(20)
i2
o
o e , i2
n 3
o
o
o
o
o
2
2sin
2
3
o
a b
c 1 P R i 2 n
sin n 1
sin n 1
1
n
o
o
2 2sin n 1 cos 2 sin n 1 2sin 2 cos n 1 o n 1
n 1
n
i n 1
i n 1
o
o
o
o
e
e
o
o
2
4 n 1
(21)
c 1 P R i 2 n
sin n 1
sin n 1
1
o
o
n 5, 7,...
2
n 1
2sin
n 1
o
o 2 n 1 cos 2 sin n 1 2sin 2 cos n 1 o o
i n 1
i n 1
o
e
e
o
o
4 n 1
the Fourier series coefficients of the parabolic pressure induced on the disc (a n =b n =0, n=0,2,4,…). For n=1, one obtains the following relations (Lekhnitskii 1968): 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 2 2 2 2 1 1 1 2 1 1 1 2 1 1 A B A B a a R A B A B a a Ri b b R A B A B b b Ri (22)
with the respective Fourier series coefficients of parabolic pressure given as:
a b
1 P R
2 sin 2
sin 2 cos 2
i 2
e
o
(23)
1
o i 2
2
sin 2 e
sin 2
c
o
o
o
o
o
o
o
o
i 2
2
2
2sin
2sin
2
1
o
o
Made with FlippingBook. PDF to flipbook with ease