PSI - Issue 2_A
Christos F. Markides et al. / Procedia Structural Integrity 2 (2016) 2659–2666 Christos F. Markides, Stavros K. Kourkoulis / Structural Integrity Procedia 00 (2016) 000–000
2662
4
2
2
2
F
F
F
(8)
,
,
x
y
xy
2
2
y
x
x y
Eq.(5) provides the generalized biharmonic equation in F:
4
4
4
F
F
F
(9)
2
0
22
12
66
11
4
2 2
4
x
x y
y
with a characteristic equation: 4 2 11 12 66 22 2 0
(10)
Eq.(10) has four purely imaginary roots, the so-called complex parameters, as follows:
i , i ;
(11)
1 i ,
2 i ,
1
2
3
1
1
4
2
2
1 2
2
;
(12)
2
2
4
2
,
12
66
12
66
11 22
11
1
2
over-bar denotes the complex conjugate. Then, following Lekhnitskii (1981) it can be written:
11 1 12 2 F x, y 2 F z F z
(13)
with z 1 =x+μ 1 y and z 2 =x+μ 2 y the so-called complicated complex variables, and:
z F z , 11 1
z F z 12 2
(14)
1 1
2 2
the Lekhnitskii’s complex potentials (where prime denotes the first derivative). Φ 1 and Φ 2 are obtained from the given values of stresses on the disc’s boundary. Namely, stresses (Eqs.(8)) and their values on L (Eqs.(6)), expressed in terms of Φ 1 and Φ 2 as (Lekhnitskii 1981):
z ,
z 1 1 1 2 2 2 x
(15)
2
,
2
2 2 2
y
1
2
xy
1 1
2 2
S 0
S 0
z
z
z 1 1 1 2 2 2 2 z
(16)
2
Y dS,
X dS
1 1
2 2
n
n
with S the arc length on L. According to Lekhnitskii (1968), Φ 1 and Φ 2 are sought in series form as:
z A A z 1 1 0 1 1 n 2
A P z , n 1n 1
(17)
z B B z 1n,2n 1,2 1,2 P z R 1 i 2 2 0 1 2 n 2
B P z ; n 2n 2
n
n
n
(18)
2 z R 1 2 2 2 z R 1 2 z
2
z
1,2
1,2
1,2
1,2
1,2
1,2
Made with FlippingBook. PDF to flipbook with ease