Mathematical Physics Vol 1
Chapter A. Fractional Calculus: A Survey of Useful Formulas
468
A.7 Transfer Functions
A.7.1 Discrete transfer function approximations These approximations are discrete transfer functions, i.e. transfer functions that depend on z − 1 , the inverse of the Z -transform variable of time, which can be identified with the delay operator. The Z -transform of a function sampled with sampling interval h is Z { f ( t ) } ( z )= z − k f ( kh ) . (A.82)
+ ∞ ∑ k = 0
Unless otherwise noted, the approximations below correspond to GL D α
0 + f ( x ) and are trun
cated after an arbitrary number N of terms. Euler or Griinwald-Letnikoff approximation, causal GL D α a + f ( x ) ≈ ∆ α h , a + h α , ( x > a ) . Therefore , s α ≈ 1 h α ⌊ x − a h ⌋ ∑ k = 0 ( − 1 ) k α k
(A.83)
z − k , ( x > a ) .
Euler or Grünwald-Letnikoff approximation, anti-causal
∆ α
h , b − h α
GL D α
f ( x ) ≈
( x < b ) .
,
b −
Therefore ,
(A.84)
( − 1 ) k
α k
⌊ b − x
h ⌋
1 h α
∑ k = 0
s α ≈
z k , ( x < b ) .
Tustin approximation (truncated Maclaurin series) s α ≈ 2 h α N ∑ k = 0 k ∑ n = 0
z − 1 ( − 1 ) n Γ ( α + 1 ) Γ ( − α + 1 ) Γ ( α − n + 1 ) Γ ( n + 1 ) Γ ( k − n + 1 ) Γ ( − α − k + n + 1 )
(A.85)
Tustin approximation (truncated continued fraction expansion) s α ≈ 2 h α " 1; 2 α − 1 z − 1 − α , α 2 − k 2 − 2 k + 1 z − 1 # N k = 1
(A.86)
First-order backwards finite difference approximation (truncated continued fraction expan sion) s α ≈ 1 h α 0; 1 1 , α z − 1 1 , − k ( k + α ) ( 2 k − 1 ) 2 k z − 1 1 , − k ( k − α ) 2 k , ( 2 k + 1 ) z − 1 1 N k = 1 (A.87) Impulse response approximation
h − α Γ ( 1 − α ) −
h − α − 1 Γ ( − α )
( kh ) − α − 1 Γ ( − α )
N ∑ k = 1
s α ≈
z − k
(A.88)
+
Step response approximation
h − α Γ ( 1 − α ) −
h − α − 1 Γ ( − α )
( kh ) − α Γ ( 1 − α ) −
N ∑ k = 1
k − 1 ∑ n = 0
s α ≈
k , a
a k z −
a n , k = 1 , 2 ,..., N . (A.89)
+
k =
Made with FlippingBook Digital Publishing Software