Mathematical Physics Vol 1
A.6 Systems of Fractional Equations
467
L { f ( t ) } ( s )
f ( t )
√ kt
1 s √ s e 1 s ν e −
1 √ π t sh2
k / s
2 √ kt ) 2 √ kt )
k k
t t
ν − 1
k / s , ( ν > 0 )
2 J ν 2 I ν
− 1 ( − 1 ( 2
ν − 1
1 s ν e e − k
k / s , ( ν > 0 )
√ s ,
e − k
k 2 √ π t 3 erfc ( k 1 √ π t 2 q t − e ak e a e ak e a e − k
( k > 0 )
4 t
k √ s ,
1 s e −
( k ≥ 0 )
)
2 √ t
k √ s ,
2
1 √ s e − 1 s √ s e − √ s s ( a + √ s ) √ s √ s ( a + √ s ) s α p − β ( s α − λ ) p 1 ( s α − λ ) n ! ( s α − λ ) n + 1 n ! ( s α − λ ) n + 1 ae − k e − k
( k ≥ 0 ) ( k ≥ 0 )
4 t
k √ s ,
k 2 4 t − k erfc ( k 2 √ t ) ( a √ t + k 2 t erfc
π e −
)+ erfc ( k 2 √ t
, ( k ≥ 0 )
)
2 √ t
( a √ t + k
2 t erfc
, ( k ≥ 0 )
)
2 √ t
, ( ℜ ( β ) > 0 | λ s − α | < 1 ) t β − 1 E p α , β
( λ t α )
, ( | λ s − α | < 1 )
e λ t α
∂ ∂λ )
, ( | λ s − α | < 1 ) , ( | λ s − α | < 1 )
n e λ t α
(
t α n e λ z
α , n
A.6 Systems of Fractional Equations
Bellow we present the explicit solutions of the Riemann-Liouville and Caputo systems of linear fractional differential equations involving the following matrices A = a 11 ... a 1 n .. . . . . .. . a n 1 ... a nn , ¯ B ( x )= b 1 ( x ) .. . b n ( x ) (A.80) These kind of systems are a important tool in many applied ar the application to the state-variable technique in control theory.
Problem
Solution ¯ Y h ( x )= e ¯ Y ( x )= e ¯ Y ( x )= e ¯ Y ( x )= e ¯ Y ( x )= E
A ( x − a ) α
¯ C , where ¯ C is a constant matrix
¯ Y ( x )= A ¯ Y ( x )
RL D α RL D α RL D α RL D α C D α C D α
a +
A ( x − a ) α A ( x − a ) α A ( x − a ) α
A ( x 0 − a ) α
¯ Y 0 , ( x 0 > a )
1 ¯ Y
a + Y ( x )= A Y ( x ) , ¯ Y ( x 0 )= a + Y ( x )= A Y ( x ) lim x a + ¯ Y ( x )= A ¯ Y ( x )+ B ¯ Y ( x ) a + Y ( x )= A Y ( x ) , ¯ Y ( a )= a + ¯ Y ( x )= A ¯ Y ( x )+ B ¯ Y ( x ) → a + [(
) −
( e
0
x − a ) 1 − α ¯ Y ( x )]= ¯ Y 0
¯ Y 0
¯ C + R α ( A ( x − a )
A ( x − ξ ) α
x a e α ) ¯ b
¯ B ( ξ ) d ξ
¯ b , ( ¯ b ∈ R n )
α ) C + R
A ( x − ξ ) α
x a e
¯ B ( ξ ) d ξ
Y ( x )= E α ( A ( x − a )
TableA.7: Systems of Fractional Equations.
where
infty ∑ k = 0
infty ∑ k = 0
z α k Γ ( k α + 1 )
z α k Γ ( k α + 1 )
A k
A k
E α ( A z )=
and E α ( A z )=
(A.81)
are, respectively, the natural matrix generalizations of the above mentioned Riemann-Liouville andCaputo σ -exponential. As to the issue of numerically solving fractional differential equations see [25].
Made with FlippingBook Digital Publishing Software