Mathematical Physics Vol 1
A.3 Fractional Derivatives and Integrals
461
Only one of the two operators I and D needs to be used, since it is all a matter of changing the signof α . In practice D is the one more often used.
A.3.2 Properties
Semigroup properties For ℜ ( α ) ∈ ( n − 1 , n ] , ℜ ( β ) ∈ ( m − 1 , m ] , m , n ∈ N , and for suitable functions, we have: RL I α a + RL I β a + f ( x )= RL I α + β a + f ( x ) and RL I α b − RL I β b − RL f ( x )= RL I α + β b − f ( x ) . (A.45)
( x − a ) − j − α Γ ( 1 − j − α )
m ∑ j = 1
RL D β
RL D α + β
RL D β − j
RL D α
RL f
( x )=
a + f ( x ) −
a + f ( a )
(A.46)
a +
a +
RL D β
RL I α − β
RL D β
RL I α − β b −
RL I α
RL I α
a + f ( x )=
a + f ( x ) and
f ( x )=
f ( x ) .
(A.47)
a +
b −
b −
RL D α
RL I α
RL D α
RL I α
a + f ( x )=
f ( x )= f ( x . )
(A.48)
a +
b −
b −
RL I n − α
a + f
( n − j )
( a )
n ∑ j = 1
RL I α
RL D α
α − j
a + f ( x )= f ( x ) −
( x − a )
(A.49)
a +
Γ ( α − j + 1 )
( − 1 ) n
f
( n − j )
RL I n − α b −
( a )
n ∑ j = 1
RL I α
RL D α
α − j
f ( x )= f ( x ) −
( b − x )
(A.50)
.
b −
b −
Γ ( α − j + 1 )
RL D m RL D α
RL D α + m
a + f ( x )=
a + f ( x ) , m ∈ N .
(A.51)
RL D m RL D α
RL D α + m b −
f ( x )=( − 1 ) m
f ( x ) , m ∈ N .
(A.52)
b −
C D α
RL I α
C D α
RL I α
b − f ( x )= f ( x ) , ℜ ( α ) / ∈ N ∨ α ∈ N .
a + f ( x )=
(A.53)
a +
b −
1 Γ ( n − α ) 1 Γ ( n − α )
C D α
RL I α
RL I α + 1 − n a +
n − α
, ℜ ( α ) ∈ N ∧ I ( α )̸= 0 . (A.54)
a + f ( x )= f ( x ) −
f ( a )( x − a )
a +
C D α
RL I α
RL I α + 1 − n a +
n − α
, ℜ ( α ) ∈ N ∧ I ( α )̸= 0 . (A.55)
a + f ( x )= f ( x ) −
f ( b )( b − x )
b −
n − 1 ∑ k = 0
f ( k ) ( a ) k !
RL I α
C D α
( x − a ) k .
a + f ( x )= f ( x ) −
(A.56)
a +
n − 1 ∑ k = 0
( − 1 ) k f ( k ) ( b ) k !
RL I α
C D α
( b − x ) k .
f ( x )= f ( x ) −
(A.57)
b −
b −
L I β
L I α + β +
L I β −
α + β −
L I α +
L I α −
+ f ( x )=
f ( x ) and
f ( x )= L I
f ( x )
(A.58)
L I β −
L D α +
L I α + f ( x )= f ( x ) and
L D α −
f ( x )= f ( x ) .
(A.59)
Made with FlippingBook Digital Publishing Software