Mathematical Physics Vol 1
Chapter 7. Partial differential equations
426
we obtain
∞ ∑ m = 1
m π x a
f ( x , y )=
K m ( y ) sin
(7.418)
,
and thus for fixed y we obtain
a Z 0
m π x a
2 a
K m ( y )=
f ( x , y ) sin
d x .
(7.419)
Thus, we have
b Z 0
n π y b
2 b
B mn =
K m ( y ) sin
d y ,
(7.420)
which yields the generalized Fourier formula
b Z 0
a Z 0
m π x a
n π y b
4 ab
B mn =
f ( x , y ) sin
sin
d x d y .
(7.421)
From the second condition we obtain ∂ u ∂ t t = 0 = ∞ ∑ m = 1 ∞ ∑ n = 1 B ∗ mn λ mn sin
m π x a
n π y b
sin
= g ( x , y ) ⇒
(7.422)
b Z 0
a Z 0
m π x a
n π y b
4 ab
B ∗ mn =
g ( x , y ) sin
sin
d x d y .
(7.423)
Problem 277 Solve the wave equation
∂ 2 ψ ∂ t 2
1 c 2
∆ ψ − (7.424) where the unknown function ψ is a function of a set of variables ( r , t ) , a r = r ( r , ϕ , θ ) . r , ϕ and θ are spherical coordinates, t is time, and c a constant. = 0 ,
Solution We will look for the solution applying the method of separation of variables, assuming that it has the form ψ ( r , t )= P ( r ) · T ( t ) . (7.425) Starting from (7.425), the equation (7.424) becomes T · ∆ P − 1 c 2 P · ¨ T = 0 , that is ∆ P P = 1 c 2 ¨ T T .
Made with FlippingBook Digital Publishing Software