Mathematical Physics Vol 1
7.8 Examples
425
The boundary conditions (7.398) become
u ( x , y , t )= X ( x ) Y ( y ) T ( t ) ⇒ u | x = 0 = X ( 0 ) Y ( y ) T ( t )= 0 ⇒ X ( 0 )= 0 ⇒ A = 0 , u | x = a = X ( a ) Y ( y ) T ( t )= 0 ⇒ X ( a )= 0 ⇒ B sin kt = 0 ⇒ ⇒ k m a = m π , u | y = 0 = X ( x ) Y ( 0 ) T ( t )= 0 ⇒ Y ( 0 )= 0 ⇒ C = 0 , u | y = b = X ( x ) Y ( b ) T ( t )= 0 ⇒ Y ( b )= 0 ⇒ D sin pt = 0 ⇒ ⇒ p n b = n π . Without losing in generality we can assume that B = 1 and D = 1, and thus we obtain:
m π x a
n π y b
X ( x )= sin
Y ( y )= sin
(7.410)
∧
.
Now, for function F we obtain
m π x a
n π y b
F mn = sin
sin
(7.411)
.
Given that
p 2 = ν 2 − k 2 , λ = c ν = c p p 2 + k 2 ⇒ m π 2 n π 2 2 2
λ mn c r
= c π r
a
+
b
m a
+
n b
⇒
λ mn = c π r
m a
+
n b
2
2
(7.412)
.
Now the solution of equation (7.401) is
T mn ( t )= B mn cos λ mn t + B ∗ mn sin λ mn t ,
(7.413)
and for u mn ( x , y , t ) we obtain
n π y b
m π x a
u mn ( x , y , t )=( B mn cos λ mn t + B ∗ mn sin λ mn t ) sin
sin
(7.414)
,
that is, for the total solution u
∞ ∑ m = 1
∞ ∑ n = 1
m π x a
n π y b
( B mn cos λ mn t + B ∗ mn sin λ mn t ) sin
u ( x , y , t )=
sin
(7.415)
.
Thus, the solution was obtained in the form of a double Fourier series. The coefficients are determined from the initial conditions (7.398) and (7.399)
∞ ∑ m = 1
∞ ∑ n = 1
n π y b
m π x a
u ( x , y , 0 )=
B mn sin
sin
= f ( x , y ) .
(7.416)
If we introduce the substitution
∞ ∑ n = 1
n π y b
K m ( y )=
B mn sin
(7.417)
,
Made with FlippingBook Digital Publishing Software