Mathematical Physics Vol 1
5.10 Examples
293
and thus
xE 2 , 2 ( − x ( − x 2 ) k Γ ( 2 k + 2 ) . Given that Γ ( 2 k + 2 )=( 2 k + 1 ) ! the previous equation can be expressed as 2 )= x ∞ ∑ k = 0
∞ ∑ k = 0
( − 1 ) k x 2 k + 1 ( 2 k + 1 ) !
2 )=
xE 2 , 2 ( − x
The series on the right hand side is the Maclaurin series for the sinus function
∞ ∑ ℓ = 0
( − 1 ) k x 2 k + 1 ( 2 k + 1 ) ! ,
sin x =
and thus
2 )= sin x .
xE 2 , 2 ( − x
Problem 209 Let α > 0 i x ∈ R . Prove the validity of the so called duplication formula 1 2 E α ( √ x )+ E α ( − √ x )= E 2 α ( x ) = E 2 α ( x ) .
Solution According to the definition
( ± √ x ) k Γ ( α k + 1 ) ,
∞ ∑ k = 0
√ x )=
E α ( ±
and the required sum is thus
( √ x ) k +(
√ x ) k
( √ x ) k ( 1 +(
∞ ∑ k = 0
∞ ∑ k = 0
− 1 ) k (
− 1 ) k )
E α ( √ x )+ E α (
√ x )=
−
=
.
Γ ( 2 α k + 1 )
Γ ( 2 α k + 1 )
Given that
( − 1 ) k = (
1 , if k = 2 n , 0 , if k = 2 n + 1 ,
it follows that
∞ ∑ n = 0
x n Γ ( 2 α n + 1 )
E α ( √ x )+ E α (
√ x )= E 2 α ( x )= 2
= E 2 α ( x ) .
−
Made with FlippingBook Digital Publishing Software