Mathematical Physics Vol 1
Chapter 5. Series Solutions of Differential Equations. Special functions
292
Solution The k -th derivative of the ML function can be calculated as follows d d x ( k ) E k ( x k )= d k d x k " ∞ ∑ l = 0 x kl Γ ( kl + 1 ) # = d k d x k " 1 + ∞ ∑ l = 1 x kl Γ ( kl + 1 ) # =
x kl Γ ( kl + 1 ) !
d k d x k
x kl Γ ( kl + 1 )
∞ ∑ l = 1
∞ ∑ l = 1
d k d x k
=
=
=
d k d x k
x kl ,
∞ ∑ l = 1
1 Γ ( kl + 1 )
=
given that d k
d x k
x kl =( kl )( kl − 1 ) ··· ( kl − k + 1 ) · x kl − k =
( kl − k ) !
z { ( kl − k )( kl − k − 1 ) · 2 · 1 · x kl − k }|
( kl )( kl − 1 ) ··· ( kl − k + 1 ) ·
=
=
( kl − k ) !
Γ ( kl + 1 ) Γ ( kl − k + 1 )
( kl ) ! ( kl − k ) !
x kl − k =
x kl − k .
=
The following relations were also used
( kl ) ! = Γ ( kl + 1 ) , ( kl − k ) ! = Γ ( kl − k + 1 ) .
Thus, the k -th derivative can be expressed as d d x ( k ) E k ( x k )= ∞ ∑ l = 1 1 Γ ( kl + 1 )
Γ ( kl + 1 ) Γ ( kl − k + 1 )
∞ ∑ l = 1
x kl − k Γ ( kl − k + 1 ) .
x kl − k =
Introducing the substitution l = n + 1, we finally obtain d d x ( k ) E k ( x k )= ∞ ∑ n = 0 x kn Γ ( kn + 1 )
k ) .
= E k ( x
Problem 208 Let x ∈ R . Determine the value xE 2 , 2 ( − x 2 ) .
Solution
Given that
∞ ∑ k = 0
z k Γ ( α k + β ) ,
E α , β ( z )=
it follows that
∞ ∑ k = 0
( − x 2 ) k Γ ( 2 k + 2 ) ,
2 )=
E 2 , 2 ( − x
Made with FlippingBook Digital Publishing Software