Mathematical Physics Vol 1
5.8 Elliptic integrals
261
Note that
u = Z u = Z
cn ( u , k )
d t q ( 1 − t 2 )( k ′ 2 d t q ( 1 − t 2 )( t 2 − k ′ 2 ) . + k 2 t 2 )
,
1
dn ( u , k )
1
5.8.5 Main properties of elliptic functions
Relations between elliptic functions Akin to trigonometric functions, the following relations exist for elliptic functions sn 2 v + cn 2 v = 1 ,
dn 2 v + k 2 sn 2 v = 1 , dn 2 v − k 2 cn 2 v = k 2 .
(5.206)
The relations follow directly from the definitions of these functions. Some values
sn ( 0 , k )= 0 ,
cn ( 0 , k )= 1 ,
dn ( 0 , k )= 1 , dn ( u , 0 )= 1 ,
am ( 0 , k )= 0 ,
sn ( u , 0 )= sin u , cn ( u , 0 )= cos u ,
(5.207)
sn ( u , 1 )= th u ,
cn ( u , 1 )= sech u , dn ( u , 1 )= sech u .
Symmetricity of elliptic functions
su ( − u )= − su ( u ) , cu ( − u )= cu ( u ) , du ( − u )= du ( u ) , am ( − u ) = − am ( u ) .
(5.208) (5.209)
Additivity formulas
sn ( u ) cn ( v ) dn ( u ) ± cn ( u ) sn ( v ) dn ( u ) 1 − k 2 sn 2 u sn 2 v cn ( u ) cn ( v ) ∓ sn ( u ) dn ( u ) sn ( v ) dn ( v ) 1 − k 2 sn 2 u sn 2 v , dn ( u ) dn ( v ) ∓ k 2 sn ( u ) cn ( u ) sn ( v ) cn ( v ) 1 − k 2 sn 2 u sn 2 v . ??
sn ( u ± v )= cn ( u ± v )= dn ( u ± v )=
(5.210)
Some properties and periodicity of elliptic functions The main properties of elliptic functions follow directly from equations (5.196) and (5.198): am ( − v )= − am v , am ( v + 2 nK )= am v + n π . (5.211) It can be seen that this function is odd, but that it is not "purely" periodic, but rather pseudoperiodic. From (5.200) and u = sin ϕ the following basic elliptic functions are obtained
sin ϕ = sin ( am v )= sn v , cos ϕ = cos ( am v )= cn v , q 1 − k 2 sin ( am v )= dn v .
(5.212)
Made with FlippingBook Digital Publishing Software