Mathematical Physics Vol 1
Chapter 5. Series Solutions of Differential Equations. Special functions
260
5.8.3 Complete elliptic integrals of the first and second kind
π / 2 Z 0
F
;1; k 2 ,
d ϕ q 1 − k 2 sin 2 ϕ
π 2
1 2
1 2
K = K ( k )= F ( π / 2 , k )=
=
,
π / 2 Z 0
d ϕ q 1 − sin 2 α sin 2 ϕ ,
K ( α )=
(5.201)
π / 2 Z 0 q
F −
;1; k 2 ,
π 2
1 2
1 2
1 − k 2 sin 2 ϕ d ϕ ==
E ( k )= E ( π / 2 , k )=
,
π / 2 Z 0 q
1 − sin 2 α sin 2 ϕ d ϕ
E ( α )=
where F ( ± 1 2 ,
1 2 ;1; k
2 ) is the Gaussian hypergeometric function .
Complementary integrals By introducing the substitution k ′ = √ 1
− k 2 , where k ′ is the complementary modulus , and
k the modulus of the elliptic integral, we obtain the following values
π / 2 Z 0
d ϕ q 1 − ( 1 − k 2 ) sin 2 ϕ
K ′ ( k )= K ( k ′ )=
= F ( π / 2 , k ′ ) ,
(5.202)
π / 2 Z 0 q
E ′ ( k )= E ( k ′ )=
1 − ( 1 − k 2 ) sin 2 ϕ d ϕ = E ( π / 2 , k ′ )
It should be emphasized that in this case () ′ does not denote a derivative!!! Legendre relation K · E ′ + EK ′ − KK ′ = π 2
5.8.4 Jacobi elliptic functions
Jacobi elliptic functions are inverse elliptic integrals. If u ( ϕ , k ) (elliptic integral of the first kind) is given by
ϕ Z 0
sin ϕ Z 0
d ϕ q 1 − k 2 sin 2 ϕ
d t ( 10 t 2 ) √ 1
u =
(5.203)
=
− k 2 t 2
for k 2 < 1, then the inverse function is
ϕ = am u (amplitude of u ) .
(5.204)
sn u = sn ( u , k )= sin φ = sin ( am u ) , cn u = cn ( u , k )= cos φ = cos ( am u )= p 1 − sn 2 u , dn u = dn ( u , k )= q 1 − k 2 sin 2 φ = q 1 − k 2 sn 2 ( u )
(5.205)
Made with FlippingBook Digital Publishing Software