Mathematical Physics Vol 1
4.6 Examples
173
Exercise 114
Calculate I C
( y − sin x ) d x + cos x d y ,
where C is a triangle, depicted in Figure 4.31 a) directly, b) by applying Stokes’ theorem in the plane.
Figure 4.31: Path of integration.
Solution a) Along OA , y = 0, d y = 0, and the integral is π / 2 Z 0 ( 0 − sin x ) d x + cos x ( 0 )= π / 2 Z 0 Along AB , x = π / 2, d x = 0, and the integral is 1 Z 0
π / 2
− sin x d x = cos x
= − 1 .
0
( y − 1 )( 0 )+ 0d y = 0 .
2 x π
2 π d x , and the integral is
Along BO , y =
, d y =
0 Z π / 2
sin x d x +
cos x d x =
sin x
0
x 2 π
π 4 −
2 x π −
2 π
2 π
2 π
+ cos x +
= 1 −
.
π / 2
Consequently, the integral along the curve C is = − 1 + 0 + 1 − π 4 − 2 π = − π 4 − 2 π . b) According to Stokes’ theorem (relation (4.90), p. 102) I c M ( x , y ) d x + N ( x , y ) d y = x R ∂ N ∂ x − ∂ M ∂ y d x d y . As in our case M = y − sin x , N = cos x , ∂ M ∂ y = 1, ∂ N ∂ x = − sin x , we obtain I C M d x + N d y = x R ∂ N ∂ x − ∂ M ∂ y d x d y = x R ( − sin x − 1 ) d x d y =
( − sin x − 1 ) d y
π / 2 Z
2 x / π Z
π / 2 Z
2 x / π
d x =
( − y sin x − y )
d x
=
0
x = 0
y = 0
x = 0
π / 2 Z x = 0
π / 2
2 x π
x 2 π
π 4 −
2 x π
2 π ( − x cos x + sin x ) −
2 π
sin x −
d x = −
−
= −
=
.
0
Made with FlippingBook Digital Publishing Software