Mathematical Physics Vol 1
Chapter 4. Field theory
172
Solution It can be shown that M ( x , y ) d x + N ( x , y ) d x is a total differential if ∂ M ∂ x = ∂ N ∂ y 23 . In this Example M = 10 x 4 − 2 xy 3 and N = − 3 x 2 y 2 , which satisfies the condition ∂ M ∂ x = ∂ N ∂ y , and it follows that ( 10 x 4 − 2 xy 3 ) d x − 3 x 2 y 2 d y is the total differential of the function ϕ = 2 x 5 − x 2 y 3 . From there, it follows that ( 2 , 1 ) Z ( 0 , 0 ) ( 10 x 4 − 2 xy 3 ) d x − 3 x 2 y 2 d y = ( 2 , 1 ) Z ( 0 , 0 ) d ϕ = = ϕ = 60 .
( 2 , 1 ) ( 0 , 0 )
( 2 , 1 ) ( 0 , 0 )
= 2 x 5 − x 2 y 3
Exercise 113 Show that the area bounded by a simple curved line C is given by
1 2 I C
x d y − y d x .
Solution According to Stokes’ theorem (relation (4.90), p. 102) I C x d y − y d x = x R ∂ ∂ x ( x ) − ∂ ∂ y
( − y ) d x d y
= 2 x R
d x d y = 2 A ,
where A is the required area. From here, it follows that
1 2 I C
A =
x d y − y d x .
23
∂ f ∂ x
∂ f ∂ y
d f =
d x +
d y = M ( x , y ) d x + N ( x , y ) d y ,
∂ 2 f ∂ x ∂ y
∂ 2 f ∂ y ∂ x
∂ f ∂ x
∂ f ∂ y ⇒
∂ N ∂ y
∂ M ∂ x
N =
M =
i
⇒
,
=
=
∂ N ∂ y
∂ M ∂ x
=
.
Made with FlippingBook Digital Publishing Software