Mathematical Physics Vol 1
Chapter 4. Field theory
138
= + +
∂ ∂ y ∂ ∂ z ∂ ∂ x
∂ V 1 ∂ y − ∂ V 2 ∂ z − ∂ V 3 ∂ x −
∂ ∂ z ∂ ∂ x ∂ ∂ y
∂ V 3 ∂ x ∂ V 1 ∂ y ∂ z ∂ V 2
∂ V 2
∂ V 1
i +
∂ x −
∂ z −
∂ V 3
∂ V 2
j +
∂ y −
∂ x −
∂ V 1
∂ V 3
k =
∂ z −
∂ y −
= − +
1 ∂ z 2
i + −
∂ 2 V 2 ∂ x 2
j + −
∂ 2 V 3 ∂ y 2
∂ 2 V 1 ∂ y 2 −
∂ 2 V
∂ 2 V 2 ∂ z 2 −
∂ 2 V 3 ∂ x 2 −
k +
∂ 2 V 3 ∂ z ∂ x
i +
∂ 2 V 1 ∂ x ∂ y
j +
∂ 2 V 2 ∂ y ∂ z
∂ 2 V 2 ∂ y ∂ x
∂ 2 V 3 ∂ z ∂ y
∂ 2 V 1 ∂ x ∂ z
k =
+
+
+
= −
1 ∂ z 2 ∂ 2 V
i + −
2 ∂ z 2
∂ 2 V 1 ∂ x 2 −
∂ 2 V 1 ∂ y 2 −
∂ 2 V
∂ 2 V 2 ∂ x 2 −
∂ 2 V 2 ∂ y 2 −
∂ 2 V
j +
+ −
3 ∂ z 2 ∂ 2 V 1 ∂ y ∂ x
∂ 2 V 3 ∂ x 2 −
∂ 2 V
3 ∂ y 2 −
k +
+
∂ 2 V 3 ∂ x ∂ z ∂ 2 V 2 ∂ z ∂ y
i +
∂ 2 V 3 ∂ y ∂ z
∂ 2 V
∂ 2 V 2 ∂ x ∂ y
∂ 2 V
1
2
j +
+
+
+
+
∂ x 2
∂ y 2
+
3 ∂ z 2
∂ 2 V 1 ∂ z ∂ x
∂ 2 V
k =
+
+
= −
∂ 2 ∂ z 2 ∂ V 3
∂ 2 ∂ x 2
∂ 2 ∂ y 2
( V 1 i + V 2 j + V 3 k )+
+
+
∂ ∂ x
∂ z
∂ ∂ y ∂ V 3
∂ z
∂ V 1 ∂ x
∂ V 2 ∂ y
∂ V 1 ∂ x
∂ V 2 ∂ y
∂ V 3
i +
j +
+
+
+
+
+
∂ ∂ z
∂ z
∂ V 1 ∂ x
∂ V 2 ∂ y
k =
+
+
+
= − ∇ 2 V + ∇ = − ∇ 2 V + ∇ ( ∇ · V ) ∂ V 1 ∂ x
∂ z
∂ V 2 ∂ y
∂ V 3
+
+
=
Exercise 67 The velocity of an arbitrary point of a rigid body rotating around a fixed point is given by the expression v = ω × r . Prove that ω = 1 2 rot v . Solution Note that when a rigid body rotates the angular velocity does not depend on the position of the point in the body, i.e. ∂ω i ∂ x = ∂ω i ∂ y = ∂ω i ∂ z = 0 ( i = 1 , 2 , 3), and thus it
Made with FlippingBook Digital Publishing Software