Mathematical Physics Vol 1

Chapter 4. Field theory

138

= + +

∂ ∂ y ∂ ∂ z ∂ ∂ x

∂ V 1 ∂ y − ∂ V 2 ∂ z − ∂ V 3 ∂ x −

∂ ∂ z ∂ ∂ x ∂ ∂ y

∂ V 3 ∂ x ∂ V 1 ∂ y ∂ z ∂ V 2

∂ V 2

∂ V 1

i +

∂ x −

∂ z −

∂ V 3

∂ V 2

j +

∂ y −

∂ x −

∂ V 1

∂ V 3

k =

∂ z −

∂ y −

= − +

1 ∂ z 2

i + −

∂ 2 V 2 ∂ x 2

j + −

∂ 2 V 3 ∂ y 2

∂ 2 V 1 ∂ y 2 −

∂ 2 V

∂ 2 V 2 ∂ z 2 −

∂ 2 V 3 ∂ x 2 −

k +

∂ 2 V 3 ∂ z ∂ x

i +

∂ 2 V 1 ∂ x ∂ y

j +

∂ 2 V 2 ∂ y ∂ z

∂ 2 V 2 ∂ y ∂ x

∂ 2 V 3 ∂ z ∂ y

∂ 2 V 1 ∂ x ∂ z

k =

+

+

+

= −

1 ∂ z 2 ∂ 2 V

i + −

2 ∂ z 2

∂ 2 V 1 ∂ x 2 −

∂ 2 V 1 ∂ y 2 −

∂ 2 V

∂ 2 V 2 ∂ x 2 −

∂ 2 V 2 ∂ y 2 −

∂ 2 V

j +

+ −

3 ∂ z 2 ∂ 2 V 1 ∂ y ∂ x

∂ 2 V 3 ∂ x 2 −

∂ 2 V

3 ∂ y 2 −

k +

+

∂ 2 V 3 ∂ x ∂ z ∂ 2 V 2 ∂ z ∂ y

i +

∂ 2 V 3 ∂ y ∂ z

∂ 2 V

∂ 2 V 2 ∂ x ∂ y

∂ 2 V

1

2

j +

+

+

+

+

∂ x 2

∂ y 2

+

3 ∂ z 2

∂ 2 V 1 ∂ z ∂ x

∂ 2 V

k =

+

+

= −

∂ 2 ∂ z 2 ∂ V 3

∂ 2 ∂ x 2

∂ 2 ∂ y 2

( V 1 i + V 2 j + V 3 k )+

+

+

∂ ∂ x

∂ z

∂ ∂ y ∂ V 3

∂ z

∂ V 1 ∂ x

∂ V 2 ∂ y

∂ V 1 ∂ x

∂ V 2 ∂ y

∂ V 3

i +

j +

+

+

+

+

+

∂ ∂ z

∂ z

∂ V 1 ∂ x

∂ V 2 ∂ y

k =

+

+

+

= − ∇ 2 V + ∇ = − ∇ 2 V + ∇ ( ∇ · V ) ∂ V 1 ∂ x

∂ z

∂ V 2 ∂ y

∂ V 3

+

+

=

Exercise 67 The velocity of an arbitrary point of a rigid body rotating around a fixed point is given by the expression v = ω × r . Prove that ω = 1 2 rot v . Solution Note that when a rigid body rotates the angular velocity does not depend on the position of the point in the body, i.e. ∂ω i ∂ x = ∂ω i ∂ y = ∂ω i ∂ z = 0 ( i = 1 , 2 , 3), and thus it

Made with FlippingBook Digital Publishing Software