Mathematical Physics Vol 1
4.6 Examples
137
Solution
∇ × ( r f ( r ))= ∇ × ( xf ( r ) i + yf ( r ) j + zf ( r ) k )=
i
j
k
∂ ∂ x ∂ ∂ z xf ( r ) yf ( r ) zf ( r ) ∂ ∂ y
=
=
= z
∂ f ∂ z
i + x
∂ f ∂ x
j + y
∂ f ∂ y
∂ f ∂ y −
∂ f ∂ z −
∂ f ∂ x −
k .
y
z
x
Let us now compute the partial derivatives of the function f by x ∂ f ∂ x = d f d r ∂ r ∂ x = d f d r ∂ ∂ x ( p x 2 + y 2 + z 2 )= f ′ ( r )
x p x 2 + y 2 + z 2
x r
= f ′
,
d f d r ≡ f ′ . In a similar way we can compute the remaining two partial derivatives
where
∂ f ∂ y
∂ f ∂ z
y r
z r
= f ′
= f ′
i
,
and thus finally obtain
∇ × ( r f ( r ))= z y r f ′ − y z r
f ′ i + x
f ′ j + y
f ′ k = 0 .
z r
x r
x r
y r
f ′ − z
f ′ − x
Exercise 66 Prove that ∇ × ( ∇ × V )= − ∇ 2 V + ∇ ( ∇ · V ) .
Solution
i
j
k
∂ ∂ x V 1
∂ ∂ y V 2
∂ ∂ z V 3
∇ × ( ∇ × V )= ∇ ×
=
= ∇ ×
∂ z
i +
∂ x
j +
∂ y
k =
∂ V 3
∂ V 2
∂ V 1
∂ V 3
∂ V 2
∂ V 1
∂ y −
∂ z −
∂ x −
i
j
k
∂ ∂ x
∂ ∂ y
∂ ∂ z
=
=
∂ V 3
∂ V 2 ∂ z
∂ V 1
∂ V 3 ∂ x
∂ V 2
∂ V 1 ∂ y
∂ y −
∂ z −
∂ x −
Made with FlippingBook Digital Publishing Software