Mathematical Physics Vol 1
Chapter 4. Field theory
130
it follows that ∇ · ( A + B )=
∂ ∂ z k · [( A 1 + B 1 ) i +( A 2 + B 2 ) j +( A 3 + B 3 ) k ]=
∂ ∂ x
∂ ∂ y
i +
j +
∂ ( A 1 + B 1 ) ∂ x
∂ ( A 2 + B 2 ) ∂ y
∂ ( A 3 + B 3 ) ∂ z
=
+
+
=
∂ A 1 ∂ x
∂ A 2 ∂ y
∂ A 3 ∂ z
∂ B 1 ∂ x
∂ B 2 ∂ y
∂ B 3 ∂ z
=
+
+
+
+
+
=
= ∇ · A + ∇ · B .
b)
∇ · ( φ A )= ∇ · ( φ A 1 i + φ A 2 j + φ A 3 k )= = ∂ ( φ A 1 ) ∂ x + ∂ ( φ A 2 ) ∂ y + ∂ ( φ A 3 ) ∂ z =
∂φ ∂ x
∂φ ∂ y ∂φ ∂ y
∂φ ∂ z
∂ A 1 ∂ x
∂ A 2 ∂ y
∂ A 3 ∂ z
φ +
φ +
φ =
A 1 +
A 2 +
A 3 +
=
=
k · ( A 1 i + A 2 j + A 3 k )+
∂φ ∂ x
∂φ ∂ z
i +
j +
+ φ ·
∂ z
∂ A 1 ∂ x
∂ A 2 ∂ y
∂ A 3
+
+
=
=( ∇ φ ) · A + φ ( ∇ · A ) .
Problem52 Show that ∇ 2 1
r
= △
1 r
= 0, where r = p x 2 + y 2 + z 2 .
Solution
∇ 2
1 r
= =
∂ 2 ∂ z 2 p
x 2 + y 2 + z 2
∂ 2 ∂ x 2 ∂ 2 ∂ x 2
∂ 2 ∂ y 2 ∂ 2 ∂ y 2
− 1
+
+
=
∂ 2 ∂ z 2
( x 2 + y 2 + z 2 ) − 1 2 .
+
+
Given that
∂ ∂ x
x 2 + y 2 + z 2 − 1
2 = − x x 2 + y 2 + z 2 − 3 2 ,
it follows that ∂ 2 ∂ x 2
2 x 2 − y 2 − z 2 ( x 2 + y 2 + z 2 )
∂ ∂ x
( x 2 + y 2 + z 2 ) − 1
( − x ( x 2 + y 2 + z 2 ) − 3
(4.153)
2 =
2 )=
.
5 2
Analogously we obtain
∂ 2 ( x 2 + y 2 + z 2 ) − 1 2 ∂ y 2
2 y 2 − x 2 − z 2 ( x 2 + y 2 + z 2 )
(4.154)
=
,
5 2
Made with FlippingBook Digital Publishing Software