Mathematical Physics Vol 1
4.6 Examples
129
Problem50 A scalar function φ = 2 x 3 y 2 z 4 is given. a) Calculate ∇ · ∇ φ . b) Show on this example that ∇ · ∇ φ = ∇ 2 φ = △ φ , where ∇ 2 ≡△≡ ∂ 2 ∂ x 2 + ∂ 2 ∂ y 2 + ∂ 2 ∂ z 2 is the so-called Laplace operator (expressed with respect to Cartesian coor dinates).
Solution a) Let us start from the definition of the gradient
∂ ∂ x
∂ ∂ y
∂ ∂ z
2 x 3 y 2 z 4 + j
( 2 x 3 y 2 z 4 )+ k
( 2 x 3 y 2 z 4 )=
∇ φ = i
= 6 x 2 y 2 z 4 i + 4 x 3 yz 4 j + 8 x 3 y 2 z 3 k .
Let us now find the divergence of this vector, i.e. ∇ · ∇ φ = i ∂ ∂ x + j ∂ ∂ y + k ∂ ∂ z ·
6 x 2 y 2 z 4 i + 4 x 3 yz 4 j + 8 x 3 y 2 z 3 k =
∂ ∂ x
∂ ∂ y
∂ ∂ z
6 x 2 y 2 z 4 +
4 x 3 yz 4 +
8 x 3 y 2 z 3 =
=
= 12 xy 2 z 4 + 4 x 3 z 4 + 24 x 3 y 2 z 2 .
b) Given that
∂ 2 φ ∂ x 2
∂ 2 φ ∂ y 2
∂ 2 φ ∂ z 2
= 12 xy 2 z 4 + 4 x 3 z 4 + 24 x 3 y 2 z 2 ,
△ φ =
+
+
by comparison with the result under a), we can see on this example that ∇ · ∇ φ = △ φ = ∇ 2 φ .
Problem51 Prove the following properties of divergence
a) ∇ · ( A + B )= ∇ · A + ∇ · B b) ∇ · ( φ A )=( ∇ φ ) · A + φ ∇ · A
Solution a) Given that (with respect to the Cartesian coordinate system) A = A 1 i + A 2 j + A 3 k and B = B 1 i + B 2 j + B 3 k ,
Made with FlippingBook Digital Publishing Software