Mathematical Physics Vol 1
Chapter 4. Field theory
120
c) As in the previous example, we first express 1 r coordinate system, and then compute the gradient
with respect to the Cartesian
! = ∇ h ( x 2 + y 2 + z 2 ) − 1
2 i ⇒
1 r
1 p x 2 + y 2 + z 2
∇ φ = ∇ ∇ φ = i
= ∇
2 + j
2 +
∂ ∂ x
∂ ∂ y
( x 2 + y 2 + z 2 ) − 1
( x 2 + y 2 + z 2 ) − 1
+ k
2 ⇒
∂ ∂ z
( x 2 + y 2 + z 2 ) − 1
∇ φ = i −
2 · 2 x + j −
2 · 2 y +
1 2
1 2
( x 2 + y 2 + z 2 ) − 3
( x 2 + y 2 + z 2 ) − 3
+ k −
2 · 2 z ⇒
1 2
( x 2 + y 2 + z 2 ) − 3
x i + y j + z k ( x 2 + y 2 + z 2 )
r r 3
∇ φ = −
= −
.
3 2
Problem34 Prove that ∇ r n = nr n − 2 r .
Solution
∇ r n = ∇ q ( x 2 + y 2 + z 2 ) n
= ∇ ( x 2 + y 2 + z 2 ) n / 2 ⇒
∇ r n = i h
n 2 ( x 2 + y 2 + z 2 ) ( n / 2 ) − 1 · 2 x i + j h
n 2 ( x 2 + y 2 + z 2 ) ( n / 2 ) − 1 · 2 y i +
+ k h
n 2 ( x 2 + y 2 + z 2 ) ( n / 2 ) − 1 · 2 z i ⇒
∇ r n = n ( x i + y j + z k )( x 2 + y 2 + z 2 ) ( n / 2 ) − 1 ∇ r n = nr n − 2 r .
R Note that in both this and previous example the solution can be obtained in a simpler way. See example 39 on page 123.
Problem35 Prove that grad f is a vector orthogonal to the surface given by the function f ( x , y , z )= c , where c is a constant.
Made with FlippingBook Digital Publishing Software