Mathematical Physics Vol 1
4.6 Examples
119
4.6 Examples 4.6.1 Gradient
Problem33 Find the gradient for the following functions a) φ = r , b) φ = ln r , c) φ = 1 r , where r is the position vector, and r its magnitude.
For the physical interpretation see Chapter 4.3.
R
Solution a) The position vector, expressed with respect to the Cartesian coordinate sys tem, r = x i + y j + z k , has the magnitude r = p x 2 + y 2 + z 2 , and thus the scalar function φ , expressed with respect to the Cartesian coordinate system, has the following form φ = r = p x 2 + y 2 + z 2 . Its gradient is
∂ p x 2 + y 2 + z 2 ∂ x x p x 2 + y 2 + z 2 = r 0 .
∂ p x 2 + y 2 + z 2 ∂ y y p x 2 + y 2 + z 2 j +
∂ p x 2 + y 2 + z 2 ∂ z
∇ φ =
i +
j +
k ⇒
z p x 2 + y 2 + z 2
∇ φ =
i +
k =
r r
=
b) The scalar function φ , expressed with respect to the Cartesian coordinate system, has the following form
1 2
ln ( x 2 + y 2 + z 2 ) ,
φ = ln r =
and thus its gradient is
1 2 ∇ ln ( x 2 + y 2 + z 2 ) ⇒
∇ φ =
1 2 1 2
∂ ∂ x
∂ ∂ y
ln ( x 2 + y 2 + z 2 )+ j
ln ( x 2 + y 2 + z 2 )+
∇ φ =
i
ln ( x 2 + y 2 + z 2 ) ⇒
∂ ∂ z
+ k
2 z x 2 + y 2 + z 2 ⇒
2 x x 2 + y 2 + z 2
2 y x 2 + y 2 + z 2
∇ φ =
i
+ j
+ k
x i + y j + z k x 2 + y 2 + z 2
r r 2
∇ φ =
=
.
Made with FlippingBook Digital Publishing Software