Mathematical Physics Vol 1
4.4 Generalized coordinates
113
Note that for an orthogonal coordinate system g i j = h 2
i δ i j . Namely, in that case we have
e i · e j = δ i j ,
(4.144)
or, in the expanded format
e 1 · e 2 = e 2 · e 3 = e 3 · e 1 = 0 , e 1 · e 1 = e 2 · e 2 = e 3 · e 3 = 1 ,
(4.145)
and thus in an orthogonal coordinate system, for the arc element we obtain d s 2 = d r · d r = = 3 ∑ i , j = 1 h i dq i h j dq j e i · e j = 3 ∑ i , j = 1 δ i j h i dq i h j dq j =
(4.146)
3 ∑ i = 1
i 2
h i dq
=
.
Finally, let us express the volume element (Fig. 4.21) by generalized orthogonal coordinates d V = h 1 dq 1 e 1 · h 2 dq 2 e 2 × h 3 dq 3 e 3 = (4.147) = h 1 h 2 h 3 dq 1 dq 2 dq 3 ( e 1 · e 2 × e 3 )= h 1 h 2 h 3 dq 1 dq 2 dq 3 .
Figure 4.21: Volume element.
4.4.2 Gradient, divergence, rotor and Laplacian - expressed by generalized coordi nates The gradient of an arbitrary function U can be expressed in generalized coordinates as grad U = ∇ U =
∂ U ∂ q 1
∂ U ∂ q 2
∂ U ∂ q 3
1 h 1 ·
1 h 2 ·
1 h 3 ·
e 1 +
e 2 +
e 3 =
(4.148)
=
3 ∑ i = 1
∂ U ∂ q i
1 h i ·
e i .
=
Divergence is given by the expression div A = ∇ · A =
(4.149)
1 h 1 h 2 h 3
( h 1 h 2 A 3 ) .
∂ ∂ q 1
∂ ∂ q 2
∂ ∂ q 3
( h 2 h 3 A 1 )+
( h 3 h 1 A 2 )+
=
Rotor is given by the expression
h 1 e 1 h 2 e 2 h 3 e 3 ∂ ∂ q 1 ∂ ∂ q 2 ∂ ∂ q 3 h 1 A 1 h 2 A 2 h 3 A 3
1 h 1 h 2 h 3 ·
rot A = ∇ × A =
(4.150)
.
Made with FlippingBook Digital Publishing Software