Mathematical Physics Vol 1
Chapter 4. Field theory
112
The differential of this vector can be expressed in one of the following ways (depending on whether the coordinates are Cartesian or some other - generalized coordinates)
d r = d x i + d y j + d z k =
y
3 ∑ i = 1 3 ∑ i = 1
3 ∑ i = 1
∂ r ∂ q i
d q i =
i =
g i d q
=
(4.138)
∆ s
i .
h i e i d q
=
∆ r
∆ y
If the Cartesian coordinates are denoted by x 1 , x 2 and x 3 , instead of x , y and z , respectively, for the arc element (via Cartesian coordinates) we obtain
∆ x
r + ∆ r
x
r
3 ∑ i , j = 1
3 ∑ i = 1
d s 2 =
i d x j =
d x i d x i
δ i j d x
(4.139)
O
where δ i j is the Kronecker delta symbol.
Figure 4.20: Arc element.
We can then determine d x i , according to (4.127), as
3 ∑ j = 1
∂ x i ∂ q j
x i = x i ( q j ) ⇒ d x i =
d q j ,
(4.140)
and obtain the arc element
3 ∑ i , j
3 ∑ i , j = 1
3 ∑ k , l = 1
∂ x i ∂ q k ·
∂ x j ∂ q l
ds 2 =
i d x j =
d q k d q l =
δ i j d x
δ i j
∂ x j ∂ q l !
3 ∑ k , l = 1 3 ∑ k , l = 1
3 ∑ i , j = 1
∂ x i ∂ q k ·
d q k d q l =
δ i j
(4.141)
=
k d q l .
g kl d q
=
On the other hand, it follows from (4.138) that
3 ∑ k , l = 1
d s 2 = d r · d r =
k d q l .
g k · g l d q
(4.142)
Comparing (4.142) and (4.141) we can conclude that g k · g l = g kl . Definition The variables g kl defined by the relations
3 ∑ i , j = 1
∂ x i ∂ q k ·
∂ x j ∂ q l
δ i j
g kl = g k · g l =
(4.143)
represent the base metric tensor or base space tensor.
Made with FlippingBook Digital Publishing Software