Mathematical Physics Vol 1
4.2 Vector field
99
c)
grad ( div v )=
∂ ∂ x ∂ ∂ z
∂ v z ∂ z ∂ v z ∂ z ∂ 2 v z ∂ x ∂ z z ∂ z 2 ∂ 2 v
∂ ∂ y
∂ v z ∂ z
∂ v y ∂ y
∂ v y ∂ y
∂ v x ∂ x
∂ v x ∂ x
i +
j +
=
+
+
+
+
∂ v y ∂ y
∂ v x ∂ x
k =
+
+
+
= +
i +
∂ 2 v z ∂ y ∂ z
∂ 2 v y ∂ x ∂ y y ∂ z ∂ y ∂ 2 v
∂ 2 v
∂ 2 v
∂ 2 v x ∂ y ∂ x
y
x
j +
+
+
+
+
∂ x 2
∂ y 2
∂ 2 v x ∂ z ∂ x
k .
+
+
d)
div ( rot v )= ?
Let
v = v x i + v y j + v z k , from where, according to definition (4.46) on page 92, for rot v we obtain rot v = ∂ v z ∂ y − ∂ v y ∂ z i + ∂ v x ∂ z − ∂ v z ∂ x j + ∂ v y ∂ x − ∂ v x ∂ y k ⇒ ⇒ rot v = a 1 i + a 2 j + a 3 k ≡ a ,
(4.70)
where we have introduced the following notation ∂ v z ∂ y − ∂ v y ∂ z ≡ a 1 , ∂ v x ∂ z − ∂ v z ∂ x ≡
a 2 ,
∂ v x ∂ y ≡
∂ v y ∂ x −
a 3 .
Further, as
∂ a 1 ∂ x
∂ a 2 ∂ y
∂ a 3 ∂ z
div a =
+
+
,
we finally obtain
div ( rot v )=
(4.71)
= ≡ 0 .
∂ 2 v y ∂ x ∂ z
+
∂ 2 v z ∂ x ∂ y
+
∂ 2 v x ∂ y ∂ z
∂ 2 v y ∂ x ∂ z −
∂ 2 v x ∂ y ∂ z −
∂ 2 v z ∂ x ∂ y −
4.2.7 Spatial derivation The procedure of generalizing the derivative in a direction is called spatial derivation , and the result of this procedure is called spatial derivative . Observe a function ϕ ( r ) , which can be a scalar or vector position function.
Let us note in the field of this function a point A and a region V (part of the space) bordered by a closed oriented surface S , such that A ∈ V . Let mes V = V (4.72) be the measure of the volume of this region, and d S the vector surface element on the closed oriented surface S .
Figure 4.10
Made with FlippingBook Digital Publishing Software