Mathematical Physics Vol 1
Chapter 4. Field theory
98
4.2.6 A brief overview of introduced concepts
vector operations of the I type vector operations of the II type
div ( grad u ) rot ( grad u )
u − scalar function →
grad u − vector →
grad ( div a )
a − vector function → Higher order operations Let u = u ( x , y , z ) be a scalar field, then
div a − scalar →
div ( rot a ) rot ( rot a )
rot a − vector →
∂ u ∂ x
∂ u ∂ y
∂ u ∂ z
k = u ′ x i + u ′ y j + u ′ z k .
i +
j +
grad u =
Let us now determine vector values of II order a)
divgrad u =
∂ ∂ x ∂ 2 u ∂ x 2
∂ u ∂ x
∂ ∂ y ∂ 2 u ∂ z 2
∂ u ∂ y
∂ ∂ z
∂ u ∂ z
(***)
=
+
+
=
∂ 2 u ∂ y 2
= ∇ u − is a scalar.
=
+
+
b)
i
j k
∂ ∂ x ∂ u ∂ x
∂ ∂ y ∂ u ∂ y
∂ ∂ z ∂ u ∂ z
rot ( grad u )=
=
=
∂ 2 u ∂ z ∂ y
i −
∂ 2 u ∂ z ∂ x
j +
∂ 2 u ∂ x ∂ y
∂ 2 u ∂ y ∂ z −
∂ 2 u ∂ x ∂ z −
∂ 2 u ∂ y ∂ x −
k .
As, for continuous functions
∂ 2 u ∂ y ∂ z ∂ 2 u ∂ x ∂ z ∂ 2 u ∂ y ∂ x
∂ 2 u ∂ z ∂ y ∂ 2 u ∂ z ∂ x ∂ 2 u ∂ x ∂ y
=
,
=
,
=
,
we finally obtain
rot ( grad u ) ≡ 0 .
(4.69)
Made with FlippingBook Digital Publishing Software