Issue 57

A. Sadeghi et alii, Frattura ed Integrità Strutturale, 57 (2021) 138-159; DOI: 10.3221/IGF-ESIS.57.12

[41] Shayanfar, M., Barkhordari, M.A. and Roudak, M.A. (2017). An efficient reliability algorithm for locating design point using the combination of importance sampling concepts and response surface method, Communications in Nonlinear Science and Numerical Simulation, 47, pp. 223 – 237. DOI: 10.1016/j.cnsns.2016.11.021. [42] Guimaraes, H., Matos, J.C. and Henriques, A.A. (2018). An innovative adaptive sparse response surface method for structural reliability analysis, Structural Safety, 73, pp. 12 – 28. DOI: 10.1016/j.strusafe.2018.02.001. [43] Elhewy, A.H., Mesbahi, E. and Pu, Y. (2006). Reliability analysis of structures using neural network method, Probabilistic Engineering Mechanics, 21, pp. 44 – 53. DOI: 10.1016/J. PROBENGMECH.2005.07.002. [44] Chojaczyk, A.A., Teixeira, A.P., Neves, L.C., Cardoso, J.B. and Soares C.G. (2015). Review and application of Artificial Neural Networks models in reliability analysis of steel structures, Structural Safety, 52, pp. 78 – 89. DOI: 10.1016/J.STRUSAFE.2014.09.002. [45] ASCE 7. (2016). Minimum design loads for buildings and other structures, New York: American Society of Civil Engineers. [46] AISC 360. (2016). Specifications for structural steel buildings, Chicago: American Institute of Steel Construction. [47] Mujeeb, M., Pasupuleti, V.D.K. and Dongre, A. (2020). Effect of Vehicle Impact on Reinforced Concrete Structures. In: Subramaniam K., Khan M. (editors) Advances in Structural Engineering, Lecture Notes in Civil Engineering, 74, Springer, Singapore. DOI: 10.1007/978-981-15-4079-0_17. [48] Mestrovic, D., Cizmar, D. and Miculinic L. (2008). Reliability of Concrete Columns under Vehicle Impact, Journal of WIT Transactions on the Built Environment, 98, pp. 157 – 165. DOI: 10.2495/SU080161. [49] Ellingwood, B., Galambos, T.V., MacGregor, J.G. and Cornell, C.A. (1980). Development of a probability based load criterion for American National Standard A58 – building code requirement for minimum design loads in buildings and other structures, Washington, DC: National Bureau of Standards, Dept. of Commerce. [50] JCSS. (2001). Joint Committee on Structural Safety, Probabilistic model code. [51] CEN. (1993). European Committee for Standardization, Structural steel I and H sections – tolerances on shape and dimensions, Brussels. [52] Zhang, X., Liu, J., Yan, Y. and Pandey, M. (2019). An Effective Approach for Reliability-Based Sensitivity Analysis with the Principle of Maximum Entropy and Fractional Moments, Entropy, 21. DOI: 10.3390/e21070649. [53] Conrath, E.J., Krauthammer, T., Marchand, K.A. and Mlakar, P.F. (1999). Structural design for physical security – state of the practice, New York: ASCE. [54] Ly, H.B., Le, L.M., Duong, H.T., Nguyen, T.C., Pham, T.A., Le, T - T., Le, V.M., Nguyen - Ngoc, L. and Pham, B.T. (2019). Hybrid artificial intelligence approaches for predicting critical buckling load of structural members under compression considering the influence of initial geometric imperfections, Applied Sciences, 9(11). DOI: 10.3390/app9112258. [55] Nguyen, H.Q., Ly, H - B., Tran, V.Q., Nguyen, T - A., Le, T - T. and Pham, B.T. (2020). Optimization of artificial intelligence system by evolutionary algorithm for prediction of axial capacity of rectangular concrete filled steel tubes under compression, Materials, 13(5). DOI: 10.3390/ma13051205. [56] Pham, B.T., Nguyen-Thoi, T., Ly, H.B., Nguyen, M.D., Al-Ansari, N., Tran, V.Q. and Le, T.T. (2020). Extreme learning machine based prediction of soil shear strength: a sensitivity analysis using Monte Carlo simulations and feature backward elimination, Sustainability, 12(6). DOI: 10.3390/su12062339. [57] Park, J. and Kim, J. (2010). Fragility analysis of steel moment frames with various seismic connections subjected to sudden loss of a column, Engineering Structures, 32, pp. 1547 – 55. DOI: 10.1016/J.ENGSTRUCT.2010.02.003. [58] Wu, Y.T. and Mohanty, S. (2006). Variable screening and ranking using sampling - based sensitivity measures, Reliability Engineering & System Safety, 91(6), pp. 634 – 647. DOI: 10.1016/j.ress.2005.05.004. [59] Sobol', I.M. (1990). Sensitivity estimates for nonlinear mathematical models, Mat Model, 2, pp. 112 – 8. [60] Sobol', I.M. (2001). Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates, Mathematics and Computers in Simulation, 55, pp. 271 – 80. DOI: 10.1016/S0378-4754(00)00270-6. [61] Arwade, S.R., Moradi, M. and Louhghalam, A. (2010). Variance decomposition and global sensitivity for structural systems, Engineering Structures, 32, pp. 1 – 10. DOI: 10.1016/J.ENGSTRUCT.2009.08.011.

159

Made with FlippingBook Digital Publishing Software