PSI - Issue 71

Nikhil Andraskar et al. / Procedia Structural Integrity 71 (2025) 158–163

163

• Upto velocity of 300 m/s, although the projectile did not penetrate the target, the fracture conoid zone was formed. • As the impact velocity of the projectile increased, the initial impact force on the target surface increased but the secondary force during the penetration decreased with the rise in impact velocity. • The kinetic energy absorbed was directly proportional to the impact velocity. References Chi, R., Serjouei, A., Sridhar, I., Tan, G.E.B., 2013, Ballistic impact on bi-layer alumina/aluminium armor: A semi-analytical approach, Int. J. Impact Eng. 52, 37 – 46. Chougale, D., Tiwari, G, 2020, Ballistic Response of Confined Ceramic/Metal Armor System Against Long Projectile, Adv. Sci. Eng. Med. 12, 1383 – 1387. Florence, A.L., 1969, Interaction of Projectiles and Composite Armor. Part II, Stanford Research Institute Menlo Park CA. Fras, T., Colard, L., Pawlowski, P., 2015, Perforation of aluminum plates by fragment simulating projectiles (FSP), Int. J. Multiphysics 9, 267 – 286. Guo, Z., Forrestal, M.J., Martinez-Morales, S., Chen, W., 2019, Perforation of Aluminum Armor Plates with Fragment-Simulating Projectiles, J. Dyn. Behav. Mater. 5, 409 – 415. Haque, B. Z., Harrington, .L., Gillespie, J.W., 2012, Multi-hit ballistic impact on S-2 glass/SC15 thick-section composites: finite element analyses, J. Strain Anal. Eng. Des. 47. 495 – 512. Johnson, G.R., 1983, A constitutive model and data for materials subjected to large strains, high strain rates, and high temperatures, Proc 7th Inf Sympo Ballist., 541 – 547. Johnson, G.R., Holmquist, T.J., 1994, An improved computational constitutive model for brittle materials, AIP Conf. Proc. 309, 981 – 984. https://doi.org/10.1063/1.46199. Justo, J., Marquer, A.T., 2003, High velocity impact resistance of composite materials, J. Phys. IV Proc. 110, 651 – 656. Khan, M.K., Iqbal, M.A., Bratov, V., Morozov, N.F., Gupta, N.K.,2020, An investigation of the ballistic performance of independent ceramic target, Thin-Walled Struct. 154, 106784. Kumar, S., Akella, K., Joshi, M., Tewari, A., Naik, N.K., 2020, Performance of Ceramic-Composite Armors under Ballistic Impact Loading, J. Mater. Eng. Perform. 29, 5625 – 5637. Minh, C.H., Boussu, F., Imad, A., Kanit, T., Crépin, D., 2014, Multi-scale model to predict the ballistic impact behavior of multi layer plain-woven fabrics, Int. J. Comput. Methods 11, 1343011. Rahbek, D.B., Johnsen, B.B.,2019, Fragmentation of an armour piercing projectile after impact on composite covered alumina tiles, Int. J. Impact Eng. 133, 103332. Rashed, A., Yazdani, M., Babaluo, A., Hajizadeh Parvin, P., 2016, Investigation on high-velocity impact performance of multi layered alumina ceramic armors with polymeric interlayers, J. Compos. Mater. 50, 3561 – 3576. Recht, R.F., Ipson, T.W.,1963, Ballistic Perforation Dynamics, J. Appl. Mech. 30, 384 – 390. Shin, H.S., Oh, S.Y., Kim, M.S., Daimaruya, M., 2005, Impact Fracture Behavior in Alumina Ceramic Plates, Key Eng. Mater. 297 – 300, 1327 – 1332. Tate, A., 1986, Long rod penetration models — Part II. Extensions to the hydrodynamic theory of penetration, Int. J. Mech. Sci. 28, 599 – 612. Toussaint, G., Polyzois, I., 2019, Steel spheres impact on alumina ceramic tiles: Experiments and finite element simulations, Int. J. Appl. Ceram. Technol. 16, 2131 – 2152.

Made with FlippingBook Digital Proposal Maker